P50 Agile
P15D

Technical Manual
Dual Powered overcurrent relay

Hardware version: A
Software version: 01
Publication reference: P15D/EN M/D
Conformity

This product complies with the directive of the Council of the European Communities relating to electromagnetic compatibility (EMC directive 2004/108/EC) and product safety (Low-voltage directive 2006/95/EC). This conformity is the result of a test conducted in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standard EN 60255-27 for the low voltage directive. The IED is designed in accordance with the international standards of the IEC 60255 series.
INTRODUCTION

CHAPTER 1
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview
2 Introduction
 2.1 Features
 2.2 Functional overview
 2.3 Ordering information
2 INTRODUCTION

2.1 Features

The P15D is a dual powered non-directional overcurrent and earth fault relay which provides protection for applications where no external auxiliary power supply is available, or where the auxiliary supply available does not guarantee the dependability required for protection applications. This relay is mainly deployed in industrial installations, distribution network substations and most specifically in Ring Main Unit (RMU) networks for monitoring and protection purposes.

The relay offers supervision functions including measurement, monitoring and recording functions. Industry and utility protocols are available for transmitting relay data to a supervisory control system via communication networks. The user-friendly operator interface facilitates easy reading of measured values and simple configuration of the relay.

Protection & Control

- Timed and instantaneous phase and earth fault protection (3 independent stages)
- Wide range of IEC/IEEE curves
- Thermal overload protection
- Cold load pickup protection
- Inrush blocking
- 4 Digital inputs
- 2 Digital outputs
- 1A/5A ordering option for CTs
- Low energy pulse output tripping for RMU
- Dual power supply option
- Internal battery for maintaining LCD/communication during faults
- 2 Setting groups
- Password protection
- Self-supervision & internal diagnostics

Measurement, Recording & Post fault analysis

- Metering of Phase & Neutral currents
- Measurement of thermal state
- Up to 100 time tagged event records
- Up to 5 disturbance records
- Battery-backed indication

Front Panel Interface

- 4 LEDs for status indication
- Backlit LCD display (16 x 2)
- 8 navigation keys for setting and interrogation
Communications

• Front USB port for real-time data viewing, device setting, and upload/download.
• Rear EIA (RS) 485 port for SCADA communication
• Multiple protocols - Modbus/IEC60870-5-103 (user selectable)

2.2 Functional overview

<table>
<thead>
<tr>
<th>ANSI</th>
<th>FUNCTION</th>
<th>P15D</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Definite time overcurrent</td>
<td>•</td>
</tr>
<tr>
<td>50N</td>
<td>Neutral/Earth definite time overcurrent</td>
<td>•</td>
</tr>
<tr>
<td>51</td>
<td>IDMT overcurrent</td>
<td>•</td>
</tr>
<tr>
<td>51N</td>
<td>Neutral/Earth IDMT overcurrent</td>
<td>•</td>
</tr>
<tr>
<td>68</td>
<td>Inrush Blocking</td>
<td>•</td>
</tr>
<tr>
<td>49</td>
<td>Thermal Overload</td>
<td>•</td>
</tr>
<tr>
<td>37</td>
<td>Undercurrent detection (aux. power mode)</td>
<td>•</td>
</tr>
<tr>
<td>CLP</td>
<td>Cold load pick-up</td>
<td>•</td>
</tr>
</tbody>
</table>

- HMI
 - Backlit LCD display | • |
 - 8 x Touch Keys | • |
 - 4 x status LEDs | • |

- Communication
 - USB port | • |
 - Modbus/IEC 60870-5-103 (RS485) | • |

- Binary Input / Output
 - Binary Input | 4 |
 - Binary Output | 2 |
 - Low energy pulse output for tripping | • |
 - Energy output for external flag indicator | • |

- Analogue Input
 - Phase current input 3x1 ph | • |
 - Phase current input 1x1 ph | • |

- General
 - Setting Groups | 2 |
 - Self diagnostics | • |
 - Measurements | • |
 - Event records | • |
 - Fault records | • |
 - Disturbance records | • |

- Hardware
 - Auxiliary supply
 - a. Internal from CT
 - b. External: 24-50V DC or 100-230V AC/DC (option)
 - Climatic conditions
 - Operating: -25°C to +65°C
 - Storage: -25°C to +65°C
1 Introduction

<table>
<thead>
<tr>
<th>ANSI</th>
<th>FUNCTION</th>
<th>P15D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Housing</td>
<td>Front: IP 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear: IP 20</td>
</tr>
</tbody>
</table>

2.3 Ordering information

![Ordering Information Table]

Figure 1: Ordering Information
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1. **CHAPTER OVERVIEW**
2. **HEALTH AND SAFETY**
3. **SYMBOLS**
4. **INSTALLING, COMMISSIONING AND SERVICING**
 4.1 Lifting Hazards
 4.2 Electrical Hazards
 4.3 UL/CSA/CUL Requirements
 4.4 Fusing Requirements
 4.5 Equipment Connections
 4.6 Protection Class 1 Equipment Requirements
 4.7 Pre-energisation Checklist
 4.8 Peripheral Circuitry
 4.9 Upgrading/Servicing
5. **DECOMMISSIONING AND DISPOSAL**
6. **REGULATORY COMPLIANCE**
 6.1 EMC Compliance: 2014/30/EU
 6.2 LVD Compliance: 2014/35/EU
 6.3 R&TTE Compliance: 2014/53/EU
 6.4 UL/CUL Compliance
 6.5 ATEX Compliance: 2014/34/EU
2 HEALTH AND SAFETY

Personnel associated with the equipment must be familiar with the contents of this Safety Information. When electrical equipment is in operation, dangerous voltages are present in certain parts of the equipment. Improper use of the equipment and failure to observe warning notices will endanger personnel.

Only qualified personnel may work on or operate the equipment. Qualified personnel are individuals who are:

- familiar with the installation, commissioning, and operation of the equipment and the system to which it is being connected.
- familiar with accepted safety engineering practises and are authorised to energise and de-energise equipment in the correct manner.
- trained in the care and use of safety apparatus in accordance with safety engineering practices
- trained in emergency procedures (first aid).

The documentation provides instructions for installing, commissioning and operating the equipment. It cannot, however cover all conceivable circumstances. In the event of questions or problems, do not take any action without proper authorisation. Please contact your local sales office and request the necessary information.
3 SYMBOLS

Throughout this manual you will come across the following symbols. You will also see these symbols on parts of the equipment.

Refer to equipment documentation. Failure to do so could result in damage to the equipment

Risk of electric shock

Risk of damage to eyesight

Earth terminal. Note: This symbol may also be used for a protective conductor (earth) terminal if that terminal is part of a terminal block or sub-assembly.

Protective conductor (earth) terminal

Instructions on disposal requirements

The term 'Earth' used in this manual is the direct equivalent of the North American term 'Ground'.
4 INSTALLING, COMMISSIONING AND SERVICING

4.1 Lifting Hazards
Many injuries are caused by:

- Lifting heavy objects
- Lifting things incorrectly
- Pushing or pulling heavy objects
- Using the same muscles repetitively

Plan carefully, identify any possible hazards and determine how best to move the product. Look at other ways of moving the load to avoid manual handling. Use the correct lifting techniques and Personal Protective Equipment (PPE) to reduce the risk of injury.

4.2 Electrical Hazards

All personnel involved in installing, commissioning, or servicing this equipment must be familiar with the correct working procedures.

Consult the equipment documentation before installing, commissioning, or servicing the equipment.

Always use the equipment as specified. Failure to do so will jeopardise the protection provided by the equipment.

Removal of equipment panels or covers may expose hazardous live parts. Do not touch until the electrical power is removed. Take care when there is unlocked access to the rear of the equipment.

Isolate the equipment before working on the terminal strips.

Use a suitable protective barrier for areas with restricted space, where there is a risk of electric shock due to exposed terminals.

Disconnect power before disassembling. Disassembly of the equipment may expose sensitive electronic circuitry. Take suitable precautions against electrostatic voltage discharge (ESD) to avoid damage to the equipment.
NEVER look into optical fibres or optical output connections. Always use optical power meters to determine operation or signal level.

Testing may leave capacitors charged to dangerous voltage levels. Discharge capacitors by reducing test voltages to zero before disconnecting test leads.

Operate the equipment within the specified electrical and environmental limits.

Before cleaning the equipment, ensure that no connections are energised. Use a lint free cloth dampened with clean water.

Contact fingers of test plugs are normally protected by petroleum jelly, which should not be removed.

4.3 UL/CSA/CUL Requirements

The information in this section is applicable only to equipment carrying UL/CSA/CUL markings.

Equipment intended for rack or panel mounting is for use on a flat surface of a Type 1 enclosure, as defined by Underwriters Laboratories (UL).

To maintain compliance with UL and CSA/CUL, install the equipment using UL/CSA-recognised parts for: cables, protective fuses, fuse holders and circuit breakers, insulation crimp terminals, and replacement internal batteries.

4.4 Fusing Requirements

Where UL/CSA listing of the equipment is required for external fuse protection, a UL or CSA Listed fuse must be used for the auxiliary supply. The listed protective fuse type is: Class J time delay fuse, with a maximum current rating of 15 A and a minimum DC rating of 250 V dc (for example type AJT15).
2 Safety Information

Where UL/CSA listing of the equipment is not required, a high rupture capacity (HRC) fuse type with a maximum current rating of 16 Amps and a minimum dc rating of 250 V dc may be used for the auxiliary supply (for example Red Spot type NIT or TIA).
For P50 models, use a 1A maximum T-type fuse.
For P60 models, use a 4A maximum T-type fuse.

Digital input circuits should be protected by a high rupture capacity NIT or TIA fuse with maximum rating of 16 A. for safety reasons, current transformer circuits must never be fused. Other circuits should be appropriately fused to protect the wire used.

CTs must NOT be fused since open circuiting them may produce lethal hazardous voltages

4.5 Equipment Connections

Terminals exposed during installation, commissioning and maintenance may present a hazardous voltage unless the equipment is electrically isolated.

Tighten M4 clamping screws of heavy duty terminal block connectors to a nominal torque of 1.3 Nm.
Tighten captive screws of terminal blocks to 0.5 Nm minimum and 0.6 Nm maximum.

Always use insulated crimp terminations for voltage and current connections.

Always use the correct crimp terminal and tool according to the wire size.

Watchdog (self-monitoring) contacts are provided to indicate the health of the device on some products. We strongly recommend that you hard wire these contacts into the substation's automation system, for alarm purposes.
4.6 Protection Class 1 Equipment Requirements

- Earth the equipment with the supplied PCT (Protective Conductor Terminal).
- Do not remove the PCT.
- The PCT is sometimes used to terminate cable screens. Always check the PCT’s integrity after adding or removing such earth connections.
- Use a locknut or similar mechanism to ensure the integrity of stud-connected PCTs.
- The recommended minimum PCT wire size is 2.5 mm² for countries whose mains supply is 230 V (e.g. Europe) and 3.3 mm² for countries whose mains supply is 110 V (e.g. North America). This may be superseded by local or country wiring regulations. For P60 products, the recommended minimum PCT wire size is 6 mm². See product documentation for details.
- The PCT connection must have low-inductance and be as short as possible.
- All connections to the equipment must have a defined potential. Connections that are pre-wired, but not used, should be earthed, or connected to a common grouped potential.

4.7 Pre-energisation Checklist

- Check voltage rating/polarity (rating label/equipment documentation).
- Check CT circuit rating (rating label) and integrity of connections.
- Check protective fuse or miniature circuit breaker (MCB) rating.
- Check integrity of the PCT connection.
Check voltage and current rating of external wiring, ensuring it is appropriate for the application.

4.8 Peripheral Circuitry

- **Caution**: Do not open the secondary circuit of a live CT since the high voltage produced may be lethal to personnel and could damage insulation. Short the secondary of the line CT before opening any connections to it.

 For most General Electric equipment with ring-terminal connections, the threaded terminal block for current transformer termination is automatically shorted if the module is removed. Therefore, external shorting of the CTs may not be required. Check the equipment documentation and wiring diagrams first to see if this applies.

- **Warning**: Where external components such as resistors or voltage dependent resistors (VDRs) are used, these may present a risk of electric shock or burns if touched.

- **Caution**: Take extreme care when using external test blocks and test plugs such as the MMLG, MMLB and P990, as hazardous voltages may be exposed. Ensure that CT shorting links are in place before removing test plugs, to avoid potentially lethal voltages.

4.9 Upgrading/Servicing

- **Caution**: Do not insert or withdraw modules, PCBs or expansion boards from the equipment while energised, as this may result in damage to the equipment. Hazardous live voltages would also be exposed, endangering personnel.

- **Warning**: Internal modules and assemblies can be heavy and may have sharp edges. Take care when inserting or removing modules into or out of the IED.
5 DECOMMISSIONING AND DISPOSAL

Before decommissioning, completely isolate the equipment power supplies (both poles of any dc supply). The auxiliary supply input may have capacitors in parallel, which may still be charged. To avoid electric shock, discharge the capacitors using the external terminals before decommissioning.

Avoid incineration or disposal to water courses. Dispose of the equipment in a safe, responsible and environmentally friendly manner, and if applicable, in accordance with country-specific regulations.
6 REGULATORY COMPLIANCE

Compliance with the European Commission Directive on EMC and LVD is demonstrated using a technical file.

6.1 EMC Compliance: 2014/30/EU

The product specific Declaration of Conformity (DoC) lists the relevant harmonised standard(s) or conformity assessment used to demonstrate compliance with the EMC directive.

6.2 LVD Compliance: 2014/35/EU

The product specific Declaration of Conformity (DoC) lists the relevant harmonized standard(s) or conformity assessment used to demonstrate compliance with the LVD directive.

Safety related information, such as the installation I overvoltage category, pollution degree and operating temperature ranges are specified in the Technical Data section of the relevant product documentation and/or on the product labelling.

Unless otherwise stated in the Technical Data section of the relevant product documentation, the equipment is intended for indoor use only. Where the equipment is required for use in an outdoor location, it must be mounted in a specific cabinet or housing to provide the equipment with the appropriate level of protection from the expected outdoor environment.

6.3 R&TTE Compliance: 2014/53/EU

Radio and Telecommunications Terminal Equipment (R&TTE) directive 2014/53/EU.

Conformity is demonstrated by compliance to both the EMC directive and the Low Voltage directive, to zero volts.

6.4 UL/CUL Compliance

If marked with this logo, the product is compliant with the requirements of the Canadian and USA Underwriters Laboratories.

The relevant UL file number and ID is shown on the equipment.

6.5 ATEX Compliance: 2014/34/EU

Products marked with the ‘explosion protection’ Ex symbol (shown in the example, below) are compliant with the ATEX directive. The product specific Declaration of Conformity (DoC) lists the Notified Body, Type Examination Certificate, and relevant harmonized standard or conformity assessment used to demonstrate compliance with the ATEX directive.

The ATEX Equipment Protection level, Equipment group, and Zone definition will be marked on the product.

For example:
Where:

'II' Equipment Group: Industrial.

'(2)G' High protection equipment category, for control of equipment in gas atmospheres in Zone 1 and 2. This equipment (with parentheses marking around the zone number) is not itself suitable for operation within a potentially explosive atmosphere.
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

<table>
<thead>
<tr>
<th></th>
<th>Chapter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hardware Design</td>
</tr>
<tr>
<td></td>
<td>2.1 Overview of Hardware design</td>
</tr>
<tr>
<td></td>
<td>2.2 Microcontroller with DSP module</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Microcontroller module (Processor board) features</td>
</tr>
<tr>
<td></td>
<td>2.3 Analogue input module</td>
</tr>
<tr>
<td></td>
<td>2.4 Power supply module</td>
</tr>
</tbody>
</table>
The P15D hardware comprises of following main components:-

- Housing, consisting of a front panel and connections at the rear
- Microcontroller module
- Analogue input circuit
- Digital input circuit
- Digital output circuit
- Impulse output circuit
- Communication circuit
- Power supply unit
- Human machine Interface (HMI) module
- External battery backup circuit

![Figure 1: P15D general assembly](image)

2.1 Overview of Hardware design

The P15D hardware design overview is explained with the help of the schematic diagram. The P15D hardware consists of three sets of internal Current Transformers (CTs). Each set consist of three numbers of the CTs basically designed to cater to internal power supply requirements (5 V and 24 V) with rectifier and MOSFET circuit and overcurrent protection requirements. Dedicated CT is available for the earth fault protection requirements. The relay also has provision for the built-in SMPS unit which accepts power supply input of 24-50 V DC or 100-230 V AC/DC from external source and outputs 12 V and 24 V DC for internal circuitry. The current signals acquired as analogue inputs get processed through operational amplifier, filter circuit, multiplexer, ADC (analogue to digital circuit) and finally fed to CPU.
The CPU design is a hybrid of the digital signal processor (DSP) and high speed micro controller which runs complex algorithm for deriving the fundamental & harmonic component from the input current signals. The digital inputs and outputs modules are designed to interface the monitoring, control and protection signals through optically isolated circuit as per the field requirements. The others peripherals modules like 16x2 LCD display, feather touch keys, USB and RS485 communication interfaces, battery backup circuits for relay parameters display, built in memory circuits etc. are integrated as per the schematic diagram and enclosed in the IP-52 enclosure.

Figure 2: Hardware design overview
2.2 **Microcontroller with DSP module**

Digital Processing circuit consists of a high speed DSP controller. The high speed DSP controller continuously monitors line phase current and E/F current through CTs, along with different optical isolated status connections. The high-speed micro-controller samples these current signals through A/D converter. The DSP controller performs powerful numerical algorithms to derive fundamental & harmonic contents of the current. All measurement are tuned to fundamental frequency i.e. 50 Hz or 60 Hz depending on the setting, therefore the relay remains stable during distorted waveform caused by various industrial load. These measured values are then used for different protection functions such as IDMT Overcurrent protection, Instantaneous Overcurrent protection, E/F protection etc.

2.2.1 **Microcontroller module (Processor board) features**

- 16-Bit Single-Chip Microcontroller with built in ADC.
- 256K Bytes built in Reprogrammable Flash memory.
- 20K Bytes Internal SRAM.
- Configurable open-drain output on digital I/O pins
- UART modules with RS-485
- SPI modules
- I2C™ modules
- External Real Time Clock
- 12Bit External ADC with 8 Channels.
- 3 Numbers of FRAM each of 32K Bytes capacity used for storage of events and DR.

2.3 **Analogue input module**

Analogue input circuit consists of 3 numbers of CT set and 1 number of external EF CT. Each set consists of 3 CTs which are connected in series.

The first CT is used for generation of 24 V, which is required for pulse output for CB operation. The second CT is used for generation of 5 V, which is required for internal circuit supply and the third CT and E/F CT are used for monitoring / protection purposes.

2.4 **Power supply module**

P15D relay is a dual powered relay, which means the relay is designed to operate on two alternate source power supplies.

- Internal source power supply from built in CT
- External source power supply 24 -50 V DC or 100-230 V AC/DC
- From Internal 3x 1.5 AA size lithium battery *
- From USB *

The optional auxiliary power supply terminals are provided in the relay. The supply range of auxiliary supply is 24-50 V DC or 100 – 230 volts AC/DC. For permanent SCADA connectivity auxiliary supply is required.

Note: Battery and USB supply used for indication purpose or changing/viewing the relay setting.
Figure 3: Block diagram of Power supply module
CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview
2 Front panel
 2.1 User Interface
 2.1.1 LCD Display
 2.1.2 Touch keys
 2.1.3 LEDs
 2.1.4 RS 485 Port
 2.1.5 USB Port
2 FRONT PANEL

![Front Panel Diagram](image)

Figure 1: Front panel

<table>
<thead>
<tr>
<th>SL no</th>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>Green LED indicates that the power is ‘ON’ (Requires ≥20% of load current) & blinking green LED indicates ‘Trip Block function’ is enabled or the relay is ‘OUT OF SERVICE’.</td>
</tr>
<tr>
<td>2</td>
<td>START</td>
<td>Amber LED switches on when the IED registers an alarm. This may be triggered by a fault, event or maintenance record.</td>
</tr>
<tr>
<td>3</td>
<td>TRIP</td>
<td>Red LED switches on when the IED issues a trip signal. This will remain on even when fault is cleared and will require a manual/hand reset (HR).</td>
</tr>
<tr>
<td>4</td>
<td>TRIP TEST</td>
<td>Amber LED blinks when relay is programmed in test mode. Once switched in test mode, the relay remains in this mode for 15 minutes. After this time, relay automatically returns to service mode.</td>
</tr>
<tr>
<td>5</td>
<td>LCD Display</td>
<td>The LCD display is used to view the settings and parameters of the relay.</td>
</tr>
</tbody>
</table>
| 6 | RESET/EDIT | This key performs dual function.
> - After the fault, this key functions as ‘RESET’ key to reset the annunciation and tele signalling contacts (Latch type).
> - During relay configuration, this key functions as ‘EDIT’ key to edit parameter settings. |
| 7 | TRIP TEST | The ‘TRIP TEST’ key is used for online testing. |
| 8 | BYPASS | The ‘BYPASS’ key is used for bypassing Trip commands. |
| 9 | PROT. RESET | The ‘PROT. RESET’ key is used to reset the hardware. This key to be used along with RESET/EDIT key. Relay will reboot when ‘PROT. RESET’ + RESET/EDIT pressed simultaneously. |
| 10 | SET / [(] | The light symbol is used to make backlit display ‘ON’, / [(] is for entering parameter setting mode and SET to save settings. |
| 11 | BAT. ON | This key is used to switch ON the relay on Battery. |
| 12 | + / ⬆ | [+] is used to increment the value and [⬆] is used to scroll through the Main menu. |
| 13 | - / ⬇ | [-] is used to decrement the value and [⬇] is used to view settings |
| | USB Port | USB communication port. (access to the USB communication port underneath the cover) |
2.1 User Interface

2.1.1 LCD Display
A backlit LCD display of 16 x 2 characters is provided for parameter and setting display, and for easy viewing of measurement, setting, fault records, date & time and error messages. The backlit display will switch off automatically after 60 seconds if no key is pressed. The backlit display can be switched ON by pressing the appropriate key on the front panel. The backlit display will turn ON automatically if any tripping occurs.

2.1.2 Touch keys
The function of the relay is controlled by the following keys on the front panel.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>(↑) is used to increase the setting value in the display. The (↓) is used to scroll through the menu.</td>
</tr>
<tr>
<td>SET</td>
<td>(◀) left arrow key (◀) is pressed then, you are able to enter the setting mode for modifying settings. SET key is used to save setting changes.</td>
</tr>
<tr>
<td>(-)</td>
<td>(↓) is used to decrease the setting value in the display. (▶) is used to scroll through the menu.</td>
</tr>
<tr>
<td>BAT ON</td>
<td>BAT ON key used for switching ON the relay on Battery and to view/edit settings and view records.</td>
</tr>
<tr>
<td>RESET/EDIT</td>
<td>RESET key is used to reset the Flag and the annunciation / Tele signalling element. EDIT key is used to edit the setting</td>
</tr>
<tr>
<td>TRIP TEST</td>
<td>TRIP TEST key is used for performing online testing.</td>
</tr>
<tr>
<td>BYPASS</td>
<td>BYPASS used for bypassing the Trip command</td>
</tr>
<tr>
<td>PROT. RESET</td>
<td>PROT. RESET key is used for Hardware reset. This key is interlocked with RESET / EDIT key. This key is not required to be pressed in normal operation, but is used to reset the hardware of relay during a relay firmware update.</td>
</tr>
</tbody>
</table>

Note: If changes are not made within 100 s while editing the settings then the display will reset itself and return to the Main Menu.
2.1.3 LEDs

The P15D Relay has 4 high-intensity LEDs for easy identification of fault type and easy user interface.

<table>
<thead>
<tr>
<th>SL no</th>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>ON</td>
<td>Green LED indicates that the power is ‘ON’ (Requires ≥20% of load current) & blinking green LED indicates ‘Trip Block function’ is enabled or the relay is ‘OUT OF SERVICE’.</td>
</tr>
<tr>
<td>LED 2</td>
<td>START</td>
<td>Amber LED switches on when the IED registers an alarm. This may be triggered by a fault, event or maintenance record.</td>
</tr>
<tr>
<td>LED 3</td>
<td>TRIP</td>
<td>Red LED switches on when the IED issues a trip signal. This will remain on even when fault is cleared and will require a manual/hand reset (HR).</td>
</tr>
<tr>
<td>LED 4</td>
<td>TRIP TEST</td>
<td>Amber LED blinks when relay is programmed in test mode. Once switched in test mode, the relay remains in this mode for 15 minutes. After this time, relay automatically returns to service mode.</td>
</tr>
</tbody>
</table>

2.1.4 RS 485 Port

RS485 port is provided at the rear of relay (near to terminal block) for permanent SCADA connectivity. The separate 5 Pin connector is used to avoid accidental connection of power wiring to communication input. The RS485 port can be used to download Fault data, Live Event, Disturbance Record etc.

2.1.5 USB Port

The USB port is situated on the front panel in the bottom right hand corner, and can be accessed by opening the flap on the front of the relay. This port is used to communicate with a locally connected PC.

It has three main purposes:

- Transferring settings information to/from the PC from/to the device.
- Downloading firmware updates.
- Downloading relay data for analysis.

The port is intended for temporary connection during testing, installation and commissioning. It is not intended to be used for permanent SCADA communications.

You can connect the unit to a PC with a USB cable up to 15 m in length.

The USB port includes a USB full-speed function controller, USB transceiver, oscillator, EEPROM, and synchronous serial data bus (UART). No other external USB components are required.

For proper operation the user must select the correct communication port in **SYSTEM DATA** menu setting.
Figure 2: USB port
CHAPTER 5
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview

2 Configuration
 2.1 Changing the settings
 2.2 Procedure for changing the setting of Parameters
 2.2.1 General procedure for changing setting of any parameter (with alphabetic value)
 2.2.2 General procedure for changing setting of any parameter (with numerical value)
 2.3 MENUS
 2.3.1 Default display
 2.3.2 Main Menu contents
 2.3.3 MEASUREMENT menu
 2.3.3.1 View contents
 2.3.4 CB CONTROL menu
 2.3.4.1 Edit settings
 2.3.4.2 View settings
 2.3.5 DATE AND TIME menu
 2.3.5.1 Edit settings
 2.3.5.2 View settings
 2.3.6 CONFIGURATION menu
 2.3.6.1 Edit settings
 2.3.6.2 View settings
 2.3.7 CT & VT RATIOS menu
 2.3.7.1 Edit settings
 2.3.7.2 View settings
 2.3.8 RECORD CONTROL menu
 2.3.8.1 Edit settings
 2.3.8.2 View settings
 2.3.9 COMMUNICATION menu
 2.3.9.1 Edit settings
 2.3.9.2 View settings
 2.3.10 GROUP 1 menu
 2.3.10.1 Edit settings
 2.3.11 GROUP 1 – SYSTEM CONFIGURATION submenu
 2.3.11.1 Edit settings (if 2nd Harmonic is disabled)
 2.3.11.2 Edit settings (if 2nd Harmonic is enabled)
 2.3.12 GROUP 1 – OVERCURRENT submenu
 2.3.12.1 Edit settings (if I>1Function is disabled)
 2.3.12.2 Edit settings (if I>1Function is selected for IEC curve)
 2.3.12.3 Edit settings (if I>1Function is selected for IEEE curve)
 2.3.12.4 Edit settings (if I>1Function is selected for DT i.e. Definite Time)
 2.3.13 GROUP 1 EARTH FAULT submenu
 2.3.13.1 Edit settings (if IN>1Function is disabled)
 2.3.13.2 Edit settings (if IN>1Function is selected for IEC curve)
 2.3.13.3 Edit settings (if IN>1Function is selected for IEEE curve)
 2.3.13.4 Edit settings (if IN>1Function is selected for DT i.e. Definite Time)
 2.3.14 GROUP 1 - THERMAL OVERLOAD submenu
 2.3.15 GROUP 1 - COLD LOAD PICKUP submenu
 2.3.15.1 Edit settings (Protection menu)
2.3.15.2 Edit settings (for I>1Function, IEC or IEEE curve is selected)
2.3.15.3 Edit settings (for I>1Function, DT i.e. Definite Time is selected)
2.3.16 GROUP 1 - Under Current Protection submenu
2.3.16.1 Edit settings (if I< Status is set as Disabled)
2.3.16.2 Edit Settings (if I< Status is set as Enabled)
2.3.17 GROUP 2 menu
2.3.17.1 Edit settings
2.3.18 SYSTEM DATA menu
2.3.18.1 Edit settings
2.3.18.2 View settings
2.3.19 VIEW RECORDS menu
2.3.19.1 View contents
2.3.19.2 View Error Log
2.4 Configuration flowcharts
2.4.1 Main Menu
2.4.2 View Measurement menu
2.4.3 Edit/View CB Control menu settings
2.4.4 Edit/View Date and Time menu settings
2.4.4.1 Edit settings
2.4.4.2 View settings
2.4.5 Edit/View Configuration menu settings
2.4.5.1 Edit settings
2.4.5.2 View settings
2.4.6 Edit/View CT and VT Ratios menu settings
2.4.7 Edit/View Record Control menu settings
2.4.8 Edit/View Communication menu settings
2.4.9 Edit/View Group 1 menu settings
2.4.10 Edit/View GROUP 1- SYSTEM CONFIG sub menu settings
2.4.10.1 If 2nd Harmonic is Disabled
2.4.10.2 If 2nd Harmonic is Enabled
2.4.11 Edit/View Group 1- Overcurrent sub menu settings
2.4.11.1 If I>1 Function is Disabled
2.4.11.2 For I>1 Function set for IEC curve
2.4.11.3 If I>1 Function set for IEEE curve
2.4.11.4 If I>1 Function set for Definite Time
2.4.12 Edit/View Group 1- Earth Fault sub menu settings
2.4.12.1 If IN>1 Function is Disabled
2.4.12.2 If IN>1 Function is set for IEC curve
2.4.12.3 If IN>1 Function is set for IEEE curve
2.4.12.4 If IN>1 Function is set for Definite Time
2.4.13 Edit/View Group 1-Thermal Overload sub menu setting
2.4.13.1 If the Characteristic is set to Disabled
2.4.13.2 If the Characteristic is set to Single
2.4.14 Edit/View Group 1-Cold Load Pickup sub menu settings
2.4.14.1 Edit/View Cold Load Pickup Protection menu settings
2.4.14.2 Edit/View Cold Load Pickup - I>1 sub menu settings
2.4.15 Edit/View Group 1-Undercurr Prot. Sub menu settings
2.4.15.1 If I< Status is set to Disabled
2.4.15.2 If I< Status is set to Enabled
2.4.16 Edit/View Group 2 menu settings
2.4.17 Edit/View System Data menu settings
2.4.17.1 Edit settings
2.4.17.2 View settings
2.4.18 Edit/View Records menu
2.4.18.1 View Fault Record
2.4.18.2 View Error Logs
2 CONFIGURATION

Each product has different configuration parameters according to the functions it has been designed to perform. There is, however, a common methodology used across the entire product to set these parameters.

This chapter describes an overview of this common methodology, as well as providing concise instructions of how to configure the device.

Using the HMI, you can:

- Display and modify settings
- View the digital I/O signal status
- Display measurements
- Display fault records
- Reset fault and alarm indications

The keypad provides full access to the device functionality by means of a range of menu options. Information is displayed on the LCD.

Figure 1: P15D Menu/Function keys
2.1 Changing the settings

The general procedure for changing settings is explained with an example:

Example: Changing setting for Trip Test function

Step 1: Select CB CONTROL Menu

```
CB CONTROL
```

Step 2: Press the (3) key and password window will appear

```
Password
0001
```

Step 3: Set the desired value using the (+ / ▲) or (- / ◀) key

```
Password
0000
```

Step 4: After setting the desired password, press the Edit key and the text or number will stop blinking.

```
Password
0000
```

Step 5: Press the (3) key and the Trip Test window will appear

```
Trip Test
Enabled
```

Step 6: Press the Edit key. The text will start blinking and the display will show the following:

```
Trip Test
Enabled
```

Step 7: The desired selection can be set using the (+ / ▲) or (- / ◀) key as shown in the display:

```
Trip Test
Enabled
```
```
Trip Test
Disabled
```
Step 8: After changing the settings, press the Edit key. The text will stop blinking and display the following:

```
Trip Test
Enabled
```

Step 9: Press the (4) key. It will ask if you want to save the setting, and display the following:

```
SET For Save
RESET for Cancel
```

Step 10: When the (4) key is pressed again, it will save the changes and display the following:

```
OK
```

Step 11: If the (+ / -) key is pressed, the relay will display the next setting as follows:

```
Latch Relay
Enabled
```
2.2 Procedure for changing the setting of Parameters

2.2.1 General procedure for changing setting of any parameter (with alphabetic value)

<table>
<thead>
<tr>
<th>Trip Test</th>
<th>Step 1: Press the Edit key, the first alphabet of word will start blinking and shall be displayed as follows.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Trip Test</td>
<td>Step 2: By using the (+ / ▶) or (- / ◀) key, the desired selection can be set as shown in the display.</td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Trip Test</td>
<td>Step 3: After setting, press the Edit key, the text will stop blinking and move to next option.</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Trip Test</td>
<td>Step 4: Press the (◀) key, it will ask if you want to save the setting, and move to the next option.</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>SET For Save</td>
<td>Step 5: When the SET key is pressed it will SAVE the changes, the OK message is displayed and relay will return to the Main Menu.</td>
</tr>
<tr>
<td>RESET For Cancel</td>
<td>If RESET key is pressed, it will CANCEL the changes and relay returns to the Main Menu.</td>
</tr>
<tr>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>CB CONTROL</td>
<td></td>
</tr>
</tbody>
</table>
2.2.2 General procedure for changing setting of any parameter (with numerical value)

Password = 0000

Step 1: Press the Edit Key the last digit of the number will start blinking and shall be displayed as follows. By using the left arrow key (\(\downarrow \)) the blinking (number) selection can be shifted from right to left.

Password = 0000

Step 2: By using the (+ \(\uparrow \)) or (- / \(\downarrow \)) key, set the desired numerical Setting.

Password = 0000

Step 3: After setting press the Edit key, the Number will stop blinking and move to next option.

Password = 0001

Step 4: When the (\(\downarrow \)) key is pressed it will ask if you want to save the setting and move to the next option.

Password = 0001

Step 5: When the SET key is pressed it will SAVE the changes, the OK message is displayed and relay will return to the Main Menu. If RESET key is pressed, it will CANCEL the changes and relay returns to the Main Menu.

SYSTEM DATA

2.3 MENUS

2.3.1 Default display

After **Power ON** or when the PROT. RESET & RESET/EDIT key is pressed, the relay will display the following message.

P50 Agile P15D

This window will flash momentarily showing the following

Relay Name: **P50 Agile P15D**

Then the control will go automatically to next window
<table>
<thead>
<tr>
<th>OC/EF Relay</th>
<th>This window will flash momentarily showing the following Relay Type: OC/EF Relay Software Version: V1.05 Unit ID = 001 Then the control will go automatically to default window</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=0000 A</td>
<td>This window shows actual Primary load current as per the CT Primary selection. Press the (↑) or (↓) key to return to the Main Menu.</td>
</tr>
<tr>
<td>B=0000 A</td>
<td>--</td>
</tr>
</tbody>
</table>

2.3.2 Main Menu contents

MEASUREMENTS	This menu is to view the Measurement parameters. Press the (+ / -) key to move to the next option.
CB CONTROL	Password protected window for "CB CONTROL" setting. i.e. Trip Test (Enabled / Disabled), Trip Block (Enabled / Disabled) and Latch Relay (Enabled/ Disabled). Press the (+ / -) key to move to the next option.
DATE AND TIME	Password protected window for "DATE AND TIME'' setting i.e. Local Time Enable, SET Year, SET Month, SET Date, SET Seconds, SET Minutes, SET Hours, RP Time Zone, DST End minutes, DST End Month DST End Day, DST End, DST start minutes DST start Month, DST start Day, DST start, DST Offset, DST Enable and Local Time Offset. Press the (+ / -) key to move to the next option
CONFIGURATION	Password protected window for "CONFIGURATION" settings i.e. Restore Defaults, Under Current Protection (Enabled / Disabled), Measure Setup, Cold Load Pickup (Enabled/Disabled), Thermal Overload (Enabled / Disabled), Earth Fault (Enabled/ Disabled), Over current (Enabled / Disabled), System Configuration (Enabled /Disabled), Setting Value, Setting Group 1, Setting Group 2 and Active Settings. Press the (+ / -) key to move to the next option
CT AND VT RATIOS	Password protected window for “CT AND VT RATIO ” setting Ph CT Primary and Ef CT Primary Press the (+ / -) key to move to the next option.
RECORD CONTROL
Password protected window for "RECORD CONTROL" setting i.e. Clear Events, Clear Maint, Clear Dist Rec, Clear Faults and Reset Thermal State.
Press the (+ / -) key to move to the next option.

COMMUNICATION
Password protected window for "COMMUNICATION" for setting RP1 Address, RP1 Time sync, RP1 Parity and RP1 Baudrate.
Press the (+ / -) key to move to the next option.

GROUP 1
Press the (+ / -) key to move to the next option.

GROUP 2
Press the (+ / -) key to move to the next option.

SYSTEM DATA
Password protected window for "SYSTEM DATA" setting i.e. Frequency, Com. Port and Password.
Press the (+ / -) key to move to the next option.

VIEW RECORDS
This menu is to view Fault Records and Error logs
Press the (+ / -) key to move to the next option.

MEASUREMENTS

2.3.3 MEASUREMENT menu

2.3.3.1 View contents

Press the (- / +) key to view the Measurement parameters.
A=0000 A
B=0000 A

This window shows actual Primary load current as per the CT Primary selection.
Press the (+ / -) key to move to the next option.

C=0000 A
N=0000 A

This window shows actual Primary load current as per the CT Primary selection.
Press the (+ / -) key to move to the next option.

a=00.00 b=00.00 A
c=00.00 n=00.00 A

This window shows actual Secondary load current.
Press the (+ / -) key to move to the next option.

Thermal State
0000%

This window shows actual Thermal State.
Press the (+ / -) key to move to the next option.

A=0000 A
B=0000 A

The window displays the first Measurement parameters.
Press the (3) or (- / +) key to return to the Main Menu.

2.3.4 CB CONTROL menu

2.3.4.1 Edit settings

Password protected window for "CB CONTROL" settings i.e. Trip Test, Trip Block and Latch Relay.
Press the (3) key to move to the next option.

Password = 0001

Press the Edit Key, the number will start blinking.
Enter the previously set password by using the (+ / -) or (- / +) key.
The Password setting range is 0000 to 9999. The default Password is "0000"
After editing the Password, press the Edit key. The number will stop blinking.
Press the (3) key to move to the next option.
Trip Test
 Enabled

Press the Edit Key, the text will start blinking.
By using the (+ / -) or (- / -) key, Trip Test can be set i.e. Enabled or Disabled.
After selecting the desired setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option. *

Trip Block
 Enabled

Press the Edit Key, the text will start blinking.
By using the (+ / -) or (- / -) key, the desired Trip Block can be set i.e. Enabled or Disabled.
After selecting the desired setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option. *

Latch Relay
 Enabled

Press the Edit Key, the text will start blinking.
By using the (+ / -) or (- / -) key, Latch Relay can be set i.e. Enabled or Disabled.
After selecting the desired setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option. *

Trip Test
 Enabled

The window displays the first setting of the CB Control.
Press the (•) key to move to the next option. *

SET For Save
RESET For Cancel

Press the SET / (•) key to SAVE the changes.
Press the RESET key to CANCEL the changes.

OK

When the SET / (•) key is pressed the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

CB CONTROL

Note:

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the CB Control setting, If the SET/ (•) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.4.2 View settings

<table>
<thead>
<tr>
<th>CB CONTROL</th>
<th>Press the (-/+)) key to view the CB Control settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Test</td>
<td>Enabled</td>
</tr>
<tr>
<td>Trip Test (Enabled)</td>
<td>This window shows the Trip Test setting done previously. Press the (+/)) key to move to the next option. ***</td>
</tr>
<tr>
<td>Trip Block</td>
<td>Enabled</td>
</tr>
<tr>
<td>Trip Block (Enabled)</td>
<td>This window shows the Trip Block setting done previously. Press the (+/)) key to move to the next option. ***</td>
</tr>
<tr>
<td>Latch Relay</td>
<td>Enabled</td>
</tr>
<tr>
<td>Latch Relay (Enabled)</td>
<td>This window shows the Latch Relay setting done previously. Press the (+/)) key to move to the next option. ***</td>
</tr>
<tr>
<td>Trip Test</td>
<td>Enabled</td>
</tr>
<tr>
<td>Trip Test (Enabled)</td>
<td>The window displays the first setting of the CB Control. Press the () or () key to return to the Main Menu.</td>
</tr>
</tbody>
</table>

Note: *** By using the \(\) or \(\) key, the relay will return to Main Menu.

2.3.5 DATE AND TIME menu

2.3.5.1 Edit settings

<table>
<thead>
<tr>
<th>DATE AND TIME</th>
<th>Password protected window for DATE AND TIME settings i.e. Local Time Enable, Local Time Offset, DST Enable, DST Offset, DST Start, DST Start Day, DST Start Month, DST Start minutes, DST End, DST End Day, DST End Month, DST End minutes, RP Time Zone, SET Hours, SET Minutes, SET Seconds, SET Date, SET Month, SET Year, Press the () key to move to the next option.</th>
</tr>
</thead>
</table>
Password = 0000

Press the Edit Key, the number will start blinking.
Enter the previously set password by using the (+ / -) key. The Password setting range is 0000 to 9999. The default Password is "0000"

After editing the Password, press the Edit key. The number will stop blinking.
Press the (-) key to move to the next option.

Local Time Enable
Fixed

Press the Edit Key the text will start blinking.
By using the (+ / -) key, Local Time Enable can be set i.e. Fixed / Flexible / Disabled.
After selecting the desired Local Time Enable, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option. *

Local Time Offset
+000 Mins

Press the Edit Key, the number will start blinking.
By using the (+ / -) key, Local Time Offset can be set. The setting range is from +720 to -720 in steps of 15.
After editing the setting, press the Edit key. The number will stop blinking. **
Press the (- /) key to move to the next option. *

DST Enable
Yes

Press the Edit Key, the text will start blinking.
By using the (+ / -) key, DST Enable can be set i.e. Yes / No
After selecting the desired setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option.*

DST Offset
60 Mins

Press the Edit Key, the number will start blinking.
By using the (+ / -) key, DST Offset can be set. The setting range is 30 / 60
After editing the setting, press the Edit key. The number will stop blinking. **
Press the (- /) key to move to the next option. *

DST Start
Last

Press the Edit Key, the text will start blinking.
By using the (+ / -) key, DST Start can be set i.e. First / Second / Third / Fourth / Last.
After selecting the desired setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option.*
<table>
<thead>
<tr>
<th>DST Start Day</th>
<th>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST Start Day can be set i.e. Sunday to Saturday. After selecting the desired setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST Start Month</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST Start Month can be set i.e. January to December After selecting the desired setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
<tr>
<td>DST Start mins</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST Start minutes can be set. The setting range is from 0 to 1425 in steps of 15. After setting the desired DST Start minutes, press the Edit key. The number will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
<tr>
<td>DST End</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST End can be set i.e. First / Second / Third / Fourth / Last. After selecting the desired setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
<tr>
<td>DST End Day</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST End Day can be set i.e. Sunday to Saturday. After selecting the desired setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
<tr>
<td>DST End Month</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, DST End Month can be set i.e. January to December After selecting the desired setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
</tbody>
</table>
Press the Edit key, the number will start blinking.
By using the (+ / -) or (- / +) key, DST End minutes can be set. The setting range is from 0 to 1425 in steps of 15.
After editing the desired DST End min, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option.*

Press the Edit, key the text will start blinking.
By using the (+ / -) or (- / +) key, RP Time Zone can be set i.e. Local / UTC
After selecting the desired RP Time Zone, press the Edit key. The text will stop blinking.
Press the (- / +) key to move to the next option.*

Press the Edit key, the number will start blinking.
By using the (+ / -) or (- / +) key, SET Hours can be set. The setting range is from 0 to 23 in steps of 1.
After setting the desired SET Hrs, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option.*

Press the Edit key, the number will start blinking.
By using the (+ / -) or (- / +) key, SET Minutes can be set. The setting range is from 0 to 59 in steps of 1.
After setting the desired SET Minutes, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option.*

Press the Edit key, the number will start blinking.
By using the (+ / -) or (- / +) key, SET Seconds can be set. The setting range is from 0 to 59 in steps of 1.
After setting the desired SET Seconds, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option.*

Press the Edit key, the number will start blinking.
By using the (+ / -) or (- / +) key, SET Date can be set. The setting range is from 1 to 31 in steps of 1.
After setting the desired SET Date, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option.*
<table>
<thead>
<tr>
<th>SET Month</th>
<th>Press the Edit Key, the number will start blinking. By using the (+ / ▲) or (- / ◄) key, SET Month can be set. The setting range is from 1 to 12 in steps of 1. After editing the setting, press the Edit key. The number will stop blinking. ** Press the (- / ◄) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SET Year</th>
<th>Press the Edit Key, the number will start blinking. By using the (+ / ▲) or (- / ◄) key, SET Year can be set. The setting range is from 00 to 99 in steps of 1. After editing the setting, press the Edit key. The number will stop blinking. ** Press the (- / ◄) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Time Enable</th>
<th>The Window displays the first setting of Date and Time. Press the (◄) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SET For Save</th>
<th>Press the SET / (◄) key to SAVE the changes. Press the RESET key to CANCEL the changes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET For Cancel</td>
<td></td>
</tr>
</tbody>
</table>
Note:

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the DATE AND TIME setting, If the SET/ () key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.5.2 View settings

<table>
<thead>
<tr>
<th>DATE AND TIME</th>
<th>Press the (- / +) key to view the DATE AND TIME setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tm: 15:25:25</td>
<td>This window shows the Date & Time setting done previously.</td>
</tr>
<tr>
<td>Dt: 20/02/14 Thu</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>Local Time Enable</td>
<td>This window shows the Local Time Enable setting done previously.</td>
</tr>
<tr>
<td>Fixed</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>Local Time Offset</td>
<td>This window shows the Local Time Offset setting done previously.</td>
</tr>
<tr>
<td>+000 Mins</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>DST Enable</td>
<td>This window shows the DST Enable setting done previously.</td>
</tr>
<tr>
<td>Yes</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>DST Offset</td>
<td>This window shows the DST Offset setting done previously.</td>
</tr>
<tr>
<td>60 Mins</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>DST Start</td>
<td>This window shows the DST Start setting done previously.</td>
</tr>
<tr>
<td>Last</td>
<td>Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>Configuration Item</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DST Start Day</td>
<td>Sunday</td>
</tr>
<tr>
<td>DST Start Month</td>
<td>March</td>
</tr>
<tr>
<td>DST Start mins</td>
<td>0060 Mins</td>
</tr>
<tr>
<td>DST End</td>
<td>Last</td>
</tr>
<tr>
<td>DST End Day</td>
<td>Sunday</td>
</tr>
<tr>
<td>DST End Month</td>
<td>October</td>
</tr>
<tr>
<td>DST End mins</td>
<td>0060 Mins</td>
</tr>
<tr>
<td>RP Time Zone</td>
<td>Local</td>
</tr>
<tr>
<td>Tm: 15:25:25</td>
<td></td>
</tr>
<tr>
<td>Dt: 20/02/14 Thu</td>
<td></td>
</tr>
</tbody>
</table>

This window shows the DST Start Day setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the DST Start Month setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the DST Start minutes setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the DST End setting done previously. Press the (+ / -) key the relay will display as follows. ***

This window shows the DST End Day setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the DST End Month setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the DST End minutes setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the RP Time Zone setting done previously. Press the (+ / -) key to move to the next option. ***

This window shows the Date & Time setting done previously. i.e. first window of Date and Time settings. Press the (●) or (▲) key to return to the Main Menu.
2.3.6 CONFIGURATION menu

2.3.6.1 Edit settings

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password = 0000</td>
<td>Press the Edit key, the number will start blinking. Enter the previously set password by using the (+ / -) or (- / +) key. The Password setting range is 0000 to 9999. The default Password is “0000”. After editing the Password, press the Edit key. The number will stop blinking. Press the (+ / -) key to move to the next option.</td>
</tr>
<tr>
<td>Restore Defaults</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, Restore Defaults can be set i.e. No Operation / All Settings / Setting Group 1 / Setting Group 2. After selecting the desired Restore Default setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
<tr>
<td>Active Settings</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, Active Setting can be set i.e. Group 1 / Group 2. After selecting the desired Active Settings, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</td>
</tr>
</tbody>
</table>

Note:*** By using the (•) or (+) key the relay will return to Main Menu.
<table>
<thead>
<tr>
<th>Setting Group 1</th>
<th>Setting Group 2</th>
<th>System Config</th>
<th>Overcurrent</th>
<th>Earth Fault</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
| Press the Edit key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, Setting Group 1 can be set i.e. Enabled or Disabled.
After selecting the desired Setting Group 1 setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * | Press the Edit key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, Setting Group 2 can be set i.e. Enabled or Disabled.
After selecting the desired Setting Group 2 setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * | Press the Edit key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, System Configuration can be set i.e. Enabled or Disabled.
After selecting the desired System Configuration setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * | Press the Edit key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, Overcurrent can be set i.e. Enabled or Disabled.
After selecting the desired Overcurrent setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * | Press the Edit key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, Earth Fault can be set i.e. Enabled or Disabled.
After selecting the desired Earth Fault setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * | Press the Edit Key, the text will start blinking.
By using the (+ / ▲) or (- / ◀) key, Thermal Overload can be set i.e. Enabled or Disabled.
After selecting the desired Thermal Overload setting, press the Edit key.
The text will stop blinking.
Press the (- / ◀) key to move to the next option. * |
Cold Load Pickup
Enabled
- Press the Edit Key, the text will start blinking.
- By using the (+ / -) or (- / ▶) key, Cold Load Pickup can be set i.e. Enabled or Disabled.
- After selecting the desired Cold Load Pickup setting, press the Edit key. The text will stop blinking. **
- Press the (- / ▶) key to move to the next option. *

Measure's setup
ABC
- Press the Edit Key, the text will start blinking.
- By using the (+ / -) or (- / ▶) key, Measure's Setup can be set i.e. ABC or RYB.
- After selecting the desired Measure's setup setting, press the Edit key. The text will stop blinking. **
- Press the (- / ▶) key to move to the next option. *

UnderCurr Prot
Enabled
- Press the Edit Key, the text will start blinking.
- By using the (+ / -) or (- / ▶) key, Under Current Protection can be set i.e. Enabled or Disabled.
- After selecting the desired Under Current Protection setting, press the Edit key. The text will stop blinking. **
- Press the (- / ▶) key to move to the next option. *

Setting Value
Secondary
- This is Non Editable Setting.
- Press the (- / ▶) key to move to the next option. *

Restore Defaults
No Operation
- The window displays the first setting of the Configuration menu.
- Press the (◄) key to move to the next option. *

SET For Save
RESET For Cancel
- Press the SET / (◄) key to SAVE the changes.
- Press the RESET key to CANCEL the changes.

OK
- When the SET / (◄) key is pressed, the relay will SAVE the changes, this window will flash for moment. The control will return to the main menu.
2.3.6.2 View settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION</td>
<td>Press the (-/) key to view the Configuration setting</td>
</tr>
<tr>
<td>Restore Defaults</td>
<td>This window shows the Restore Defaults setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>No Operation</td>
<td></td>
</tr>
<tr>
<td>Active Setting</td>
<td>This window shows the Active setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>Group 1</td>
<td></td>
</tr>
<tr>
<td>Setting Group 1</td>
<td>This window shows the Setting Group 1 setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Setting Group 2</td>
<td>This window shows the Setting Group 2 setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>System Config</td>
<td>This window shows the System Configuration setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Overcurrent</td>
<td>This window shows the Over Current setting done previously. Press the (+/) key to move to the next option. ***</td>
</tr>
<tr>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Setting</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Earth Fault</td>
<td>Enabled</td>
</tr>
<tr>
<td>Thermal Overload</td>
<td>Enabled</td>
</tr>
<tr>
<td>Cold Load Pickup</td>
<td>Enabled</td>
</tr>
<tr>
<td>Measure’t Setup</td>
<td>ABC</td>
</tr>
<tr>
<td>UnderCurr Prot</td>
<td>Enabled</td>
</tr>
<tr>
<td>Setting Value</td>
<td>Secondary</td>
</tr>
<tr>
<td>Restore Defaults</td>
<td>No Operation</td>
</tr>
</tbody>
</table>

Note: *** By using the (↑) or (↓) key, the relay will return to Main Menu.
2.3.7 CT & VT RATIOS menu

2.3.7.1 Edit settings

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT AND VT RATIOS</td>
<td>Password protected window for "CT AND VT RATIOS" settings i.e. Phase CT Primary and E/F CT Primary. Press the (↑) key to move to the next option.</td>
</tr>
<tr>
<td>Password = 0000</td>
<td>Press the Edit Key, the number will start blinking. Enter the previously set password by using the (+ / ▲) or (- / ▼) key. The Password setting range is 0000 to 9999. The default Password is "0000". After editing the Password, press the Edit key. The number will stop blinking. Press the (↑) key to move to the next option.</td>
</tr>
<tr>
<td>Phase CT Primary</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / ▲) or (- / ▼) key, Phase CT Primary can be set. The setting range is from 1 to 30000 in steps of 1. After editing the Phase CT Primary setting, press the Edit key. The number will stop blinking. ** Press the (- / ▼) key to move to the next option.</td>
</tr>
<tr>
<td>E/F CT Primary</td>
<td>Press the Edit Key the number will start blinking. By using the (+ / ▲) or (- / ▼) key, E/F CT Primary can be set. The setting range is from 1 to 30000 in steps of 1. After editing the E/F CT Primary setting, press the Edit key. The number will stop blinking. ** Press the (- / ▼) key to move to the next option.</td>
</tr>
<tr>
<td>Phase CT Primary</td>
<td>The window displays the first setting of the CT & VT RATIOS. Press the (↑) key to move to the next option.</td>
</tr>
<tr>
<td>SET For Save</td>
<td>Press the SET / (↑) key to SAVE the changes. Press the RESET key to CANCEL the changes.</td>
</tr>
<tr>
<td>OK</td>
<td>When the SET / (↑) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.</td>
</tr>
</tbody>
</table>
Note:

* The User can scroll the previous settings by using the (+ / -) key.

** After editing any sub menus of the CT AND VT RATIOS setting, If the SET/ (●) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.7.2 View settings

<table>
<thead>
<tr>
<th>CT AND VT RATIOS</th>
<th>Press the (- / +) key to view the CT AND VT RATIOS settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase CT Primary</td>
<td>This window shows the Phase CT Primary setting done previously. Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>00100 A</td>
<td></td>
</tr>
<tr>
<td>Phase CT Sec'y</td>
<td>This window shows the Phase CT Secondary setting done previously. Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>00001 A</td>
<td></td>
</tr>
<tr>
<td>E/F CT Primary</td>
<td>This window shows the E/F CT Primary setting done previously. Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>00100 A</td>
<td></td>
</tr>
<tr>
<td>E/F CT Secondary</td>
<td>This window shows the E/F CT Secondary setting done previously. Press the (+ / -) key to move to the next option. ***</td>
</tr>
<tr>
<td>00001 A</td>
<td></td>
</tr>
<tr>
<td>Phase CT Primary</td>
<td>The window displays the first setting of the CT & VT RATIOS. Press the (◄) or (◄) key to return to the Main Menu.</td>
</tr>
<tr>
<td>00100 A</td>
<td></td>
</tr>
</tbody>
</table>
2.3.8 RECORD CONTROL menu

2.3.8.1 Edit settings

<table>
<thead>
<tr>
<th>RECORD CONTROL</th>
<th>Password protected window for "RECORD CONTROL" settings i.e. Clear Events, Clear Faults, Clear Dist Records and Clear Maint. Reset Thermal State. Press the (▼) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password = 0000</td>
<td>Press the Edit Key, the number will start blinking. Enter the previously set password by using the (+ / ▲) or (- / ▼) key. The Password setting range is 0000 to 9999. The default Password is “0000”. After editing the Password, press the Edit key. The number will stop blinking. Press the (▼) key to move to the next option.</td>
</tr>
<tr>
<td>Clear Events</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / ▲) or (- / ▼) key, Clear Events can be set i.e. Yes / No. After selecting the desired Clear Events setting, press the Edit key. The text will stop blinking. ** Press the (- / ▼) key to move to the next option. *</td>
</tr>
<tr>
<td>Clear Faults</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / ▲) or (- / ▼) key, Clear Faults can be set i.e. Yes / No. After selecting the desired Clear Faults setting press the Edit key, the text will stop blinking. ** Press the (- / ▼) key to move to the next option. *</td>
</tr>
<tr>
<td>Clear Dist Rec</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / ▲) or (- / ▼) key, Clear Disturbance Rec can be set i.e. Yes / No. After selecting the desired Clear Dist Rec setting, press the Edit key. The text will stop blinking. ** Press the (- / ▼) key to move to the next option. *</td>
</tr>
</tbody>
</table>

Note: *** By using the (▼) or (▲) key the relay will return to Main Menu.
Clear Maint
No

Press the Edit Key, the text will start blinking. By using the (+ / -) or (- /) key, Clear Maint can be set i.e. Yes / No. After selecting the desired Clear Maint setting, press the Edit key. The text will stop blinking. ** Press the (- /) key to move to the next option. *

Thermal Reset
No

Press the Edit Key, the text will start blinking. By using the (+ / -) or (- /) key, Thermal Reset can be set i.e. Yes / No. After selecting the desired Thermal Reset setting, press the Edit key. The text will stop blinking. ** Press the (- /) key to move to the next option. *

Clear Events
No

The window displays the first setting of the Record Control. Press the (+ / -) key the relay show as follows

SET For Save
RESET For Cancel

Press the SET / (+ / -) key to SAVE the changes. Press the RESET key to CANCEL the changes.

OK

When the SET / (+ / -) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

RECORD CONTROL

Note:

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the RECORD CONTROL, If the SET / (+ / -) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.9 COMMUNICATION menu

2.3.9.1 Edit settings

<table>
<thead>
<tr>
<th>COMMUNICATION</th>
<th>Password protected window for "COMMUNICATION" settings i.e. RP1 Address, RP1 Baudrate, RP1 Parity and RP1 Timesync. Press the (⦁) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password = 0000</td>
<td>Press the Edit Key, the number will start blinking. Enter the previously set password by using the (+ / ⦁) or (- / ⦁) key. The Password setting range is 0000 to 9999. The default Password is "0000". After editing the Password, press the Edit key. The number will stop blinking. Press the (⦁) key to move to the next option.</td>
</tr>
<tr>
<td>RP1 Address</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / ⦁) or (- / ⦁) key, the desired RP1 Address can be set. The setting range is from 1 to 247 in steps of 1. After editing the RP1 Address setting, press the Edit key. The number will stop blinking. ** Press the (- / ⦁) key to move to the next option. *</td>
</tr>
<tr>
<td>RP1 Baudrate</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / ⦁) or (- / ⦁) key, RP1 Baudrate can be set i.e. 9600 / 14400 / 19200 / 28800 / 38400 / 57600. After editing the RP1 Baudrate setting, press the Edit key. The number will stop blinking. ** Press the (- / ⦁) key to move to the next option. *</td>
</tr>
<tr>
<td>RP1 Parity</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / ⦁) or (- / ⦁) key, RP1 Parity can be set i.e. Even / Odd / None. After selecting the RP1 Parity setting, press the Edit key. The text will stop blinking. ** Press the (- / ⦁) key to move to the next option. *</td>
</tr>
<tr>
<td>RP1 Timesync</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / ⦁) or (- / ⦁) key, RP1 Timesync can be set i.e. Enabled / Disabled. After selecting the RP1 Timesync setting, press the Edit key. The text will stop blinking. ** Press the (- / ⦁) key to move to the next option. *</td>
</tr>
</tbody>
</table>
The window displays the first setting of the Communication Menu. Press the (↑) key the relay show as follows:

Press the SET / (↑) key to SAVE the changes. Press the RESET key to CANCEL the changes.

When the SET / (↑) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

Note:

* The User can scroll the previous settings by using the (+ / ▼) key.

** After Editing any sub menus of the COMMUNICATION setting, if the SET/ (↑) key is pressed, the Relay display SET to SAVE the changes or RESET to CANCEL the changes.

View settings

- **RP1 Address**
 - **001**
 - This window shows the RP1 Address setting done previously. Press the (+ / ▼) key to move to the next option.

- **RP1 Baudrate**
 - **57600 BPS**
 - This window shows the RP Baudrate setting done previously. Press the (+ / ▼) key to move to the next option.
RP1 Parity
Even
This window shows the RP1 Parity setting done previously. Press the (+ / -) key to move to the next option. ***

RP1 Timesync
Disabled
This window shows the RP1 Timesync setting done previously. Press the (+ / -) key to move to the next option. ***

RP1 Address
1
The window displays the first setting of the Communication menu. Press the (3) or (4) key to return to Main Menu.

COMMUNICATION

Note: *** By using the (луш) or (пунк) key, the relay will return to Main Menu.

2.3.10 GROUP 1 menu

2.3.10.1 Edit settings

GROUP
Password protected window for "GROUP 1" settings i.e. System Configuration Over Current, Earth Fault, Thermal Overload, Cold Load Pickup and Under Current Protection. Press the (3) key to move to the next option.

Password = 0000
Press the Edit Key, the number will start blinking. Enter the previously set password by using the (+ / -) or (- / +) key. The Password setting range is 0000 to 9999. The default Password is "0000" After editing the Password, press the Edit key. The number will stop blinking. Press the (3) key to move to the next option. By using the (+ / -) or (- / +) key, the Protection Function setting menu can be scrolled and will be displayed as below.

SYSTEM CONFIG
Password protected window for "SYSTEM CONFIGURATION" settings.
2.3.11 GROUP 1 – SYSTEM CONFIGURATION submenu

2.3.11.1 Edit settings (if 2nd Harmonic is disabled)

By using the (+ / -) or (- / +) key, select the System Configuration setting menu in Group 1.
Press the (↑) key to move to the next option.

Press the Edit Key, the text will start blinking.
By using the (+ / -) or (- / +) key, 2nd Harmonic can be set i.e. Enabled / Disabled
After selecting the 2nd Harmonic setting, press the Edit key. The text will stop blinking. #
Press the (↑) key to move to the next option.

Press the SET / (↓) key to SAVE the changes.
Press the RESET key to CANCEL the changes.
When the SET / (3) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

2.3.11.2 Edit settings (If 2nd Harmonic is enabled)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Config</td>
<td>By using the (+ / 5) or (- / 4) key, select the System Configuration setting menu in Group 1. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>2nd Harmonic</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / 5) or (- / 4) key, 2nd Harmonic can be set i.e. Enabled / Disabled. After selecting the desired 2nd Harmonic setting, press the Edit key. The text will stop blinking. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>2nd Harm Thresh</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / 5) or (- / 4) key, 2nd Harmonic Threshold can be set. The setting range is from 5% to 70% in steps of 1%. After editing the 2nd Harmonic Threshold setting, press the Edit key. The number will stop blinking. Press the (- / 4) key to move to the next option.</td>
</tr>
<tr>
<td>L Lift 2H</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / 5) or (- / 4) key, L Lift 2H can be set. The setting range is from 4 to 32 in steps of 1. After editing the L Lift 2H setting, press the Edit key. The number will stop blinking. Press the (- / 4) key to move to the next option.</td>
</tr>
</tbody>
</table>

The window displays the first setting of the System Configuration menu. Press the (•) key to move to the next option.
OK

When the SET / (•) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

GROUP 1

Note:

#. If the function is set as enable then the relay will allow to edit the settings of respective sub menus. If the function is set as disable then the relay will not allow to edit the settings.

* The User can scroll the previous settings by using the (+ / ▲) key.

** After Editing any sub menus of the System Configuration setting, if the SET / (•) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.12 GROUP 1 – OVERCURRENT submenu

2.3.12.1 Edit settings (if I>1Function is disabled)

By using the (+ / ▲) or (- / ▼) key, select the Over Current setting menu in Group 1.

Press the (•) key to move to the next option.

Press the Edit Key, the text will start blinking.

By using the (+ / ▲) or (- / ▼) key the desired I>1 Function (Curve Selection) can be set i.e. Disabled / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse and DT.

After selecting the desired I>1 Function, press the Edit Key. The text will stop blinking.

Press the (•) key to move to the next option.

Press the SET / (•) key to SAVE the changes.

Press the RESET key to CANCEL the changes.
When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

2.3.12.2 Edit settings (if I>1Function is selected for IEC curve)

GROUP 1

2.3.12.2 Edit settings (if I>1Function is selected for IEC curve)

OK

When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

GROUP 1

2.3.12.2 Edit settings (if I>1Function is selected for IEC curve)

Overcurrent

By using the (+ /) or (- /) key, select the Over Current setting menu in Group 1.

Press the () key to move to the next option.

I>1 Function

By using the (+ /) or (- /) key, I>1 Function (Curve Selection) can be set i.e. Disable / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse and DT.#

After selecting the desired I>1 Function, press the Edit key. The text will stop blinking.

Press the () key to move to the next option.

I>1 Current Set

1.00 A

By using the (+ /) or (- /) key, I>1 Current Set can be set. The setting range is from 0.20 to 2.50 in steps of 0.01.

After editing the I>1 Current Set setting, press the Edit key. The number will stop blinking.

Press the (- /) key to move to the next option.

I>1 TMS

1.00

Press the Edit Key, the number will start blinking.

By using the (+ /) or (- /) key, I>1 TMS can be set. The setting range is from 0.025 to 1.200 in steps of 0.005.

After editing the desired I>1 TMS, press the Edit key. The number will stop blinking.

Press the (- /) key to move to the next option.
I>1 tRESET

1.00 S

Press the Edit Key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 tRESET can be set. The setting range is from 0 to 100s in steps of 0.01s.

After editing the I>1 tReset setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

I>1 2H Blocking

Enabled

Press the Edit Key, the text will start blinking. By using the (+ / -) or (- / +) key, I>1 2H Blocking function can be set i.e. Enabled / Disabled.

After selecting the desired I>1 2H Blocking setting, press the Edit key. The text will stop blinking. **

Press the (◄) key to move to the next option. *

I>1 Current Set

1.00 A

The window displays the first setting of the Overcurrent menu.

Press the (◄) key to move to the next option.

SET For Save

RESET For Cancel

Press the SET / (◄) key to SAVE the changes.

Press the RESET key to CANCEL the changes.

OK

When the SET / (◄) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

GROUP 1

Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Over Current setting, if the SET / (◄) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.12.3 Edit settings (if I>1 Function is selected for IEEE curve)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent</td>
<td>By using the (+ / -) or (- / +) key, select the Over Current setting menu in Group 1. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Function</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / -) or (- / +) key, I>1 Function (Curve Selection) can be set i.e. Disable / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse and DT. After selecting the desired I>1 Function, press the Edit key. The text will stop blinking. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Current Set</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 Current Set can be set. The setting range is from 0.20 to 2.50 in steps of 0.01. After editing the I>1 Current Set setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Time Dial</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 Time Dial can be set. The setting range is from 0.01 to 100 in steps of 0.01. After editing the I>1 Time Dial setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 tRESET</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 tRESET can be set. The setting range is from 0 to 100s in steps of 0.01s. After editing the I>1 tReset setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 2H Blocking</td>
<td>Press the Edit key, the text value will start blinking. By using the (+ / -) or (- / +) key, I>1 2H Blocking function can be set i.e. Enabled / Disabled. After selecting the I>1 2H Blocking setting, press the Edit key. The text will stop blinking. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Current Set</td>
<td>The window displays the first setting of the Over Current menu. Press the (•) key to move to the next option.</td>
</tr>
</tbody>
</table>

** *
2.3.12.4 Edit settings (if I>1Function is selected for DT i.e. Definite Time)

<table>
<thead>
<tr>
<th>Overcurrent</th>
<th>By using the (+ / -) key, select the Over Current setting menu in Group 1. Press the () key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I>1 Function</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) key, I>1 Function (Curve Selection) can be set i.e. Disable / US ST Inverse / US Inverse /IEEE E Inverse /IEEE V Inverse /IEEE M Inverse /UK LT Inverse /IEC E Inverse /IEC V Inverse /S Inverse (1.3 Sec) /IEC S Inverse and DT. After selecting the desired I>1 Function setting, press the Edit key. The text will stop blinking. Press the () key to move to the next option.</td>
</tr>
</tbody>
</table>

Note:

If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Over Current setting, If the SET/ () key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
5 Configuration

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I>1 Current Set</td>
<td>1.00 A</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / -) key, I>1 Current Set can be set. The DT setting range for I>1 Current setting & I>2 Current setting is from 0.20 to 35.00 in steps of 0.01 and the DT setting for I>3 Current setting is from 01.00 to 35.00 in steps of 0.01. After editing the I>1 Current Setting, press the Edit key. The number will stop blinking. ** Press the (- /) key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 Time Delay</td>
<td>1.00 S</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / -) key, I>1 Time Delay can be set. The setting range is from 0 to 100s in steps of 0.01s. After editing the I>1 Time Delay setting, press the Edit key. The number will stop blinking. ** Press the (- /) key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 tRESET</td>
<td>1.00 S</td>
<td>Press the Edit Key, the number will start blinking. By using the (+ / -) key, I>1 tRESET can be set. The setting range is from 0 to 100s in steps of 0.01s. After editing the I>1 tReset setting, press the Edit key. The number will stop blinking. ** Press the (- /) key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 2H Blocking</td>
<td>Enable</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / -) key, I>1 2H Blocking function can be set i.e. Enable / Disable. After selecting the I>1 2H Blocking setting, press the Edit key. The text will stop blinking. ** Press the () key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 Current Set</td>
<td></td>
<td>The window displays the first setting of the Over Current menu. Press the () key to move to the next option.</td>
</tr>
</tbody>
</table>

Control Buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET For Save</td>
<td>Press the SET / () key to SAVE the changes. Press the RESET key to CANCEL the changes.</td>
</tr>
<tr>
<td>RESET For Cancel</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.</td>
</tr>
</tbody>
</table>
Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Over Current setting, If the SET/ (3) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes. .

Note: The settings of I>2 Function and I>3 Function to be set in similar manner as that of I>1 Function.

2.3.13 GROUP 1 EARTH FAULT submenu

2.3.13.1 Edit settings (if IN>1Function is disabled)

<table>
<thead>
<tr>
<th>Earth Fault</th>
<th>By using the (+ / -) or (- / +) key, select the Earth Fault setting menu in Group 1. Press the (4) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN>1Function Disabled</td>
<td>Press the Edit Key, the text will start blinking. By using the (+ / -) or (- / +) key, IN>1 Function (Curve Selection) can be set i.e. Disable / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / IEC S Inverse (1.3 Sec) / IEC S Inverse and DT. # After selecting the desired IN>1 Function, press the Edit key. The text will stop blinking. Press the (4) key to move to the next option.</td>
</tr>
<tr>
<td>SET For Save</td>
<td>Press the SET / (3) key to SAVE the changes. Press the RESET key to CANCEL the changes.</td>
</tr>
<tr>
<td>RESET For Cancel</td>
<td>When the SET / (3) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.</td>
</tr>
</tbody>
</table>
2.3.13.2 Edit settings (if IN>1Function is selected for IEC curve)

GROUP 1

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Fault</td>
<td>By using the (+ / -) key, select the Earth Fault setting menu in Group 1. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>IN>1Function</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) key, IN>1 Function (Curve Selection) can be set i.e. Disabled / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse 1 and DT. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>IN>1Current Set</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / -) key, IN>1 Current Setting can be set. The setting range is from 0.10 to 2.50 in steps of 0.01. Press the (- / •) key to move to the next option.</td>
</tr>
<tr>
<td>IN>1 TMS</td>
<td>Press the Edit key the number will start blinking. By using the (+ / -) key, IN>1 TMS can be set. The setting range is from 0.025 to 1.2 in steps of 0.005. Press the (- / •) key to move to the next option.</td>
</tr>
<tr>
<td>IN>1 tRESET</td>
<td>Press the Edit key the number will start blinking. By using the (+ / -) key, IN>1 tRESET can be set. The setting range is from 0 to 100s in steps of 0.01s. Press the (- / •) key to move to the next option.</td>
</tr>
</tbody>
</table>

Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.
5 Configuration

2.3.13.3 Edit settings (if IN>1 Function is selected for IEEE curve)

<table>
<thead>
<tr>
<th>IN>1 2H Blocking</th>
<th>Press the Edit key, the text value will start blinking. By using the (+ / -) or (- / +) key, IN>1 2H Blocking function can be set i.e. Enabled / Disabled. After selecting the desired IN>1 Blocking setting, press the Edit key. The text will stop blinking. ** Press the (- / +) key to move to the next option. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN>1Current Set</td>
<td>The window displays the first setting of the Earth Fault setting menu. Press the (+) key to move to the next option.</td>
</tr>
<tr>
<td>0.20 A</td>
<td></td>
</tr>
<tr>
<td>SET For Save</td>
<td>Press the SET / (+) key to SAVE the changes. Press the RESET key to CANCEL the changes.</td>
</tr>
<tr>
<td>RESET For Cancel</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>When the SET / (+) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.</td>
</tr>
<tr>
<td>GROUP 1</td>
<td></td>
</tr>
</tbody>
</table>

Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Earth Fault setting, If the SET/ (+) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
IN>1 Function

US ST Inverse

Press the Edit key, the text will start blinking.

By using the (+ / -) or (- / +) key, **IN>1 Function** (Curve Selection) can be set i.e. Disabled / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse and DT.

After selecting the desired IN>1 Function, press the Edit key. The text will stop blinking.

Press the (↑) key to move to the next option.

IN>1 Current Set

0.20 A

Press the Edit key, the number will start blinking.

By using the (+ / -) or (- / +) key, **IN>1 Current Setting** can be set. The setting range is from 0.10 to 2.50 in steps of 0.01.

After editing the IN>1 Current Set setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

IN>1 Time Dial

1.00

Press the Edit key, the number will start blinking.

By using the (+ / -) or (- / +) key, **IN>1 Time Dial** can be set. The setting range is from 0.01 to 100 in steps of 0.01.

After editing the IN>1 Time Dial setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

IN>1 tRESET

1.00 S

Press the Edit key, the number will start blinking.

By using the (+ / -) or (- / +) key, **IN>1 tRESET** can be set. The setting range is from 0 to 100s in steps of 0.01s.

After editing the IN>1 tReset setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

IN>1 2H Blocking

Enabled

Press the Edit key, the text will start blinking.

By using the (+ / -) or (- / +) key, **IN>1 2H Blocking** function can be set i.e. Enabled / Disabled.

After selecting the desired IN>1 2H Blocking setting, press the Edit Key. The text will stop blinking. **

Press the (- / +) key to move to the next option. *

The window displays the first setting of the Earth Fault setting menu.

Press the (↑) key to move to the next option.

SET For Save

Press the SET / (↑) key to SAVE the changes.

Press the RESET key to CANCEL the changes.
When the SET / (●) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / 5) key.

** After Editing any sub menus of the Earth Fault setting, If the SET/ (●) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.13.4 Edit settings (if IN>1 Function is selected for DT i.e. Definite Time)

<table>
<thead>
<tr>
<th>Earth Fault</th>
<th>By using the (+ / 5) or (- / 4) key, select the Earth Fault setting menu in Group 1. Press the (●) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN>1Function</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / 5) or (- / 4) key, IN>1 Function (Curve Selection) can be set i.e. Disabled / US ST Inverse / US Inverse / IEEE E Inverse / IEEE V Inverse / IEEE M Inverse / UK LT Inverse / IEC E Inverse / IEC V Inverse / S Inverse (1.3 Sec) / IEC S Inverse and DT. # After selecting the desired IN>1 Function, press the Edit key. The text will stop blinking. Press the (●) key to move to the next option.</td>
</tr>
<tr>
<td>IN>1Current Set</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / 5) or (- / 4) key, IN>1 Current Setting can be set. The DT setting range for IN>1 Current setting & IN>2 Current setting is from 0.10 to 35.00 in steps of 0.01 and the DT setting for I>3 Current setting is from 01.00 to 35.00 in steps of 0.01 After editing the IN>1 Current Set setting, press the Edit key. The number will stop blinking. ** Press the (- / 4) key to move to the next option. *</td>
</tr>
<tr>
<td>Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **IN>1 Time Delay** | **1.00 S**
Press the Edit key the number will start blinking.
By using the (+ /) or (- /) key, **IN>1 Time Delay** can be set. The setting range is from 0 to 200s in steps of 0.01s.
After editing the **IN>1 Time Delay** setting, press the Edit key. The number will stop blinking. **
Press the (- /) key to move to the next option. * |
| **IN>1 tRESET** | **1.00 S**
Press the Edit key the number will start blinking.
By using the (+ /) or (- /) key, **IN>1 tRESET** can be set. The setting range is from 0 to 100s in steps of 0.01s.
After editing the **IN>1 tRESET** setting, press the Edit key. The number will stop blinking. **
Press the (- /) key to move to the next option. * |
| **IN>1 2H Blocking** | Enabled
Press the Edit key, the text will start blinking.
By using the (+ /) or (- /) key, **IN>1 2H Blocking** function can be set i.e. Enabled / Disabled.
After selecting the desired **IN>1 2H Blocking** setting, press the Edit key. The text will stop blinking. **
Press the (- /) key to move to the next option. * |
| **IN>1 Current Set** | **0.20 A**
The window displays the first setting of the Earth Fault setting menu.
Press the () key to move to the next option. |
| **SET For Save** | **RESET For Cancel**
Press the SET / () key to SAVE the changes.
Press the RESET key to CANCEL the changes. |
| **OK** | When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu. |
| **GROUP 1** | |
Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Earth Fault setting, If the SET/ () key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

Note: The settings of IN>2 Function and IN>3 Function to be set in similar manner as that of IN>1 Function.

2.3.14 GROUP 1-THERMAL OVERLOAD submenu

2.3.14.1 Edit settings (if Thermal Overload Characteristic is disabled)

<table>
<thead>
<tr>
<th>Thermal Overload</th>
<th>By using the (+ / -) or (- / +) key, select the Thermal Overload setting menu in Group 1. Press the () key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, the desired Characteristic can be set i.e. Single / Disabled. # After selecting the desired Characteristic, press the Edit key. The text will stop blinking. Press the () key to move to the next option. *</td>
</tr>
<tr>
<td>SET For Save</td>
<td>Press the SET / () key to SAVE the changes. Press the RESET key to CANCEL the changes.</td>
</tr>
<tr>
<td>RESET For Cancel</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.</td>
</tr>
</tbody>
</table>

GROUP 1
5 Configuration

Note:

If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After editing any sub menus of the Thermal Overload setting, if the SET/ (✓) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.14.2 Edit settings (if Thermal Overload Characteristic is set as Single)

<table>
<thead>
<tr>
<th>Thermal Overload</th>
<th>By using the (+ / ▲) or (- / ◀) key, select the Thermal Overload setting menu in Group 1. Press the (●) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / ▲) or (- / ◀) key, the desired Characteristic can be set i.e. Single / Disable. # After selecting the desired Characteristic, press the Edit key. The text will stop blinking. Press the (●) key to move to the next option. *</td>
</tr>
<tr>
<td>Thermal Trip</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / ▲) or (- / ◀) key, Thermal Trip can be set. The setting range is from 0.10 to 4 in steps of 0.01. After editing the Thermal Trip setting, press the Edit key. The number will stop blinking. ** Press the (- / ◀) key to move to the next option. *</td>
</tr>
<tr>
<td>Thermal Alarm</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / ▲) or (- / ◀) key, Thermal Alarm can be set. The setting range is from 50% to 100% in steps of 1%. After editing the Thermal Alarm setting, press the Edit key. The number will stop blinking. ** Press the (- / ◀) key to move to the next option. *</td>
</tr>
</tbody>
</table>
Time Constant 1

Press the Edit key, the number will start blinking.

By using the (+ / -) or (- / +) key, Time Constant 1 can be set. The setting range is from 1 to 200 in steps of 1.

After editing the Time constant 1 setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

K

Press the Edit key, the number will start blinking.

By using the (+ / -) or (- / +) key, K constant can be set. The setting range is from 1 to 1.5 in steps of 0.01.

After editing the K constant setting, press the Edit key. The number will stop blinking. **

Press the (- / +) key to move to the next option. *

Thermal Trip

The window displays the first setting of the thermal overload menu.

Press the () key the relay show as follows

SET For Save

Press the SET / () key to SAVE the changes.

RESET For Cancel

Press the RESET key to CANCEL the changes.

OK

When the SET / () key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

GROUP 1

Note:

#. If the function is set as enabled then the relay will allow editing the settings of respective sub menus. If the function is set as disabled then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After editing any sub menus of the Thermal Overload setting. If the SET/ () key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.15 GROUP 1 - COLD LOAD PICKUP submenu

2.3.15.1 Edit settings (Protection menu)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Load Pickup</td>
<td>By using the (+ / -) or (- / +) key, select the Cold Load Pickups setting menu in Group 1. Press the (+) key to move to the next option.</td>
</tr>
<tr>
<td>tcold Time Delay</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tcold Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tcold Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>tclp Time Delay</td>
<td>Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tclp Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tclp Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Status</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, I>1 Status can be set i.e. Enabled / Blocked. After selecting the desired I>1 Status setting, press the Edit key. The text will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>2 Status</td>
<td>Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, I>2 Status can be set i.e. Enabled / Blocked. After selecting the desired I>2 Status setting, press the Edit key. The text will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
</tbody>
</table>
I>3 Status

Enabled

Press the Edit key, the text will start blinking.

By using the (+ / ▲) or (- / ▼) key, I>3 Status can be set i.e. Enabled / Blocked. #

After selecting the desired I>3 Status setting, press the Edit key. The text will stop blinking.

Press the (- / ▼) key to move to the next option.

IN>1 Status

Enabled

Press the Edit key, the text will start blinking.

By using the (+ / ▲) or (- / ▼) key, IN>1 Status can be set i.e. Enabled / Blocked. #

After selecting the desired IN>1 Status setting, press the Edit key. The text will stop blinking.

Press the (- / ▼) key to move to the next option.

IN>2 Status

Enabled

Press the Edit key, the text will start blinking.

By using the (+ / ▲) or (- / ▼) key, IN>2 Status can be set i.e. Enabled / Blocked. #

After selecting the desired IN>2 Status setting, press the Edit key. The text will stop blinking.

Press the (- / ▼) key to move to the next option.

IN>3 Status

Enabled

Press the Edit key, the text will start blinking.

By using the (+ / ▲) or (- / ▼) key, IN>3 Status can be set i.e. Enabled / Blocked. #

After selecting the desired IN>3 Status setting, press the Edit key. The text will stop blinking.

Press the (- / ▼) key to move to the next option.

SET For Save

RESET For Cancel

Press the SET / (●) key to SAVE the changes.

Press the RESET key to CANCEL the changes.

OK

When the SET / (●) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.
Note:

#. If the function is set as **enabled** then the relay will allow editing the settings of respective sub menus. If the function is set as **disabled** then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Cold Load Pickup setting, If the SET/ (・) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

Note: The settings (I>1, I>2, I>3, IN>1, IN>2 and IN>3) which are to be enabled in OVERCURRENT and EARTH FAULT function of Group setting, only those settings are visible in COLD LOAD PICKUP.

2.3.15.2 Edit settings (for I>1Function, IEC or IEEE curve is selected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Load Pickup</td>
<td>By using the (+ / -) or (- / +) key, select the Cold Load Pickup setting menu in Group 1. Press the (・) key to move to the next option.</td>
</tr>
<tr>
<td>tcold Time Delay</td>
<td>07200 Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tcold Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tcold Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>tclp Time Delay</td>
<td>07200 Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tclp Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tclp Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / +) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Status</td>
<td>Enabled Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, I>1 Status can be set i.e. Enabled / Blocked. # After selecting the desired I>1 Status setting, press the Edit Key. The selectable text will stop blinking. Press the (・) key to move to the next option.</td>
</tr>
</tbody>
</table>
5 Configuration

I>1 Current Set

1.50 A

Press the Edit key, the number will start blinking.

By using the (+ / -) key, I>1 Current Set can be set. The setting range is from 0.20 to 4 in steps of 0.01.

After editing the I>1 Current Set setting, press the Edit Key. The number will stop blinking**.

Press the (- / -) to move to the next option. *

I>1 TMS

1.00

Press the Edit key, the number will start blinking.

By using the (+ / -) key, I>1 TMS can be set. The setting range is from 0.025 to 1.2 in steps of 0.005.

After editing the I>1 TMS setting, press the Edit key. The number will stop blinking. **

Press the (- / -) key to move to the next option. *

I>1 Current Set

1.50 A

The window displays the first setting of I>1 Current Set of the Cold Load Pickup setting.

Press the (•) key to move to the next option.

SET For Save

RESET For Cancel

Press the SET / (•) key to SAVE the changes.

Press the RESET key to CANCEL the changes.

OK

When the SET / (•) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the main menu.

GROUP 1

Note:

If the function is set as enabled then the relay will allow editing the settings of respective sub menus. If the function is set as disabled then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Cold Load Pickup setting, If the SET / (•) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.15.3 Edit settings (for I>1Function, DT i.e. Definite Time is selected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Load Pickup</td>
<td>By using the (+ / -) or (- / +) key, select the Cold Load Pickup setting menu in Group 1. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>tcold Time Delay</td>
<td>07200
Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tcold Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tcold Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / •) key to move to the next option.</td>
</tr>
<tr>
<td>tclp Time Delay</td>
<td>07200
Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, tclp Time Delay can be set. The setting range is from 0 to 14400 in steps of 1. After editing the tclp Time Delay setting, press the Edit key. The number will stop blinking. Press the (- / •) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Status</td>
<td>Enabled
Press the Edit key, the text will start blinking. By using the (+ / -) or (- / +) key, I>1 Status can be set i.e. Enabled / Blocked. # After selecting the I>1 Status setting, press the Edit Key. The text will stop blinking. Press the (•) key to move to the next option.</td>
</tr>
<tr>
<td>I>1 Current Set</td>
<td>1.50 A
Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 Current Set can be set. The setting range is from 0.20 to 4 in steps of 0.01. After editing the I>1 Current Set setting, press the Edit key. The number will stop blinking**. Press the (- / •) key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 Time Delay</td>
<td>1.00 S
Press the Edit key, the number will start blinking. By using the (+ / -) or (- / +) key, I>1 Time Delay can be set. The setting range is from 0 to 100s in steps of 0.01s. After editing the I>1 Time Delay setting, press the Edit Key. The number will stop blinking. ** Press the (- / •) key to move to the next option. *</td>
</tr>
<tr>
<td>I>1 Current Set</td>
<td>1.50 A
The window displays the first setting of the I>1 Current Set of the Cold Load Pickup setting. Press the (•) key to move to the next option.</td>
</tr>
</tbody>
</table>
5 Configuration

2.3.16 GROUP 1 - Under Current Protection submenu

2.3.16.1 Edit settings (if I< Status is set as Disabled)

| UnderCurr Prot | By using the (+ / -) or (- / +) key, select the Under Current Protection setting menu in Group 1. Press the (▼) key to move to the next option. |

Note:

#. If the function is set as enabled then the relay will allow editing the settings of respective sub menus. If the function is set as disabled then the relay will not allow editing the settings of sub menus and will bypass the protection function.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Cold Load Pickup setting, If the SET/ (▼) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

Note:

The settings of I>2 Function, I>3 Function, IN>1 Function, IN>2 Function and IN>3 Function to be set in similar manner as that of I>1 Function.
I< Status

| Disabled |

Press the Edit key, the text will start blinking.

By using the (+ / - / - / +) key, I< Status can be set i.e. Enabled / Disabled.

After selecting the I< Status setting, press the Edit key. The text will stop blinking.

Press the (•) key to move to the next option.

SET For Save

- Press the SET / (•) key to SAVE the changes.
- Press the RESET key to CANCEL the changes.

OK

- When the SET / (•) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.

GROUP 1

Note:

#. If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings.

* The User can scroll the previous settings by using the (+ / - / - / +) key.

** After Editing any sub menus of the Under Current protection setting, If the SET/ (•) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.

2.3.16.2 Edit Settings (if I< Status is set as Enabled)

| UnderCurr Prot |

By using the (+ / - / - / +) key, select the Under Current Protection setting menu in Group 1.

Press the (•) to move to the next option.

| I< Status |

- Enabled |

Press the Edit key, the text will start blinking.

By using the (+ / - / - / +) key, the desired I< Status can be set i.e. Enabled / Disabled.

After selecting the desired I< Status setting, press the Edit key. The text will stop blinking.

Press the (•) key to move to the next option.
<table>
<thead>
<tr>
<th>I<</th>
<th>1.00 A</th>
</tr>
</thead>
</table>
| **Press the Edit key, the number will start blinking.**
By using the (+ / -) or (- / +) key, I< settings can be set. The setting range is from 0.10 to 1 in steps of 0.01.
After editing the I< setting, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option. |

<table>
<thead>
<tr>
<th>t I<</th>
<th>1.00 S</th>
</tr>
</thead>
</table>
| **Press the Edit key, the number will start blinking.**
By using the (+ / -) or (- / +) key, t I< setting can be set. The setting range is from 0.2 to 100s in steps of 0.01s.
After editing the t I< setting, press the Edit key. The number will stop blinking.
Press the (- / +) key to move to the next option. |

<table>
<thead>
<tr>
<th>I<</th>
<th>1.00 A</th>
</tr>
</thead>
</table>
| **The window displays the first setting of the under current Protection menu.**
Press the (●) key to move to the next option. |

| **SET For Save**
RESET For Cancel |
| --- | --- |
| **Press the SET / (●) key to SAVE the changes.**
Press the RESET key to CANCEL the changes. |

<table>
<thead>
<tr>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the SET / (●) key is pressed, the relay will SAVE the changes and this window will flash for moment. The control will return to the Main Menu.</td>
</tr>
</tbody>
</table>

Note:

If the function is set as enable then the relay will allow editing the settings of respective sub menus. If the function is set as disable then the relay will not allow editing the settings.

* The User can scroll the previous settings by using the (+ / -) key.

** After Editing any sub menus of the Under Current protection setting, If the SET / (●) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
2.3.17 GROUP 2 menu

2.3.17.1 Edit settings

Password protected window for "GROUP 2" settings i.e. System Configuration, Over Current, Earth Fault, Thermal Overload, Cold Load Pickup and Under Current Protection.

Press the (・) key the relay will display as follows.

Password = 0000

Press the Edit Key, the number will start blinking.
Enter the previously set password by using the (+ / ◀) or (- / ▶) key. The Password setting range is 0000 to 9999. The default Password is “0000”

After editing the Password, press the Edit key. The settable number will stop blinking.

Press the (・) key to move to the next option.

By using the (+ / ◀) or (- / ▶) key, the Protection function setting menu can be scrolled and will display as below.

SYSTEM CONFIG

Password protected window for "SYSTEM CONFIGURATION" settings

OVERCURRENT

Password protected window for "OVERCURRENT" Protection settings

EARTH FAULT

Password protected window for "EARTH FAULT" Protection settings

THERMAL OVER LOAD

Password protected window for "THERMAL OVERLOAD" Protection settings

COLD LOAD PICKUP

Password protected window for "COLD LOAD PICKUP" Protection settings
Note: The Group 2 Function for the setting System Configuration, over Current, Earth Fault, Thermal Overload, Cold Load Pkp and under Current Protection is similar to Group 1.

2.3.18 SYSTEM DATA menu

2.3.18.1 Edit settings

By using the (+ / ⬆️) or (- / ⬇️) key, select the System Data setting menu. Press the (◄) to move to the next option.

Frequency
50Hz

Press the Edit key, the text will start blinking.
By using the (+ / ⬆️) or (- / ⬇️) key, system Frequency can be set i.e. 50Hz / 60Hz
After selecting the desired Frequency, press the Edit key. The text will stop blinking. **
Press the (- / ⬇️) key to move to the next option. *

Password = 0000

Press the Edit key, the number will start blinking.
Enter the New password by using the (+ / ⬆️) or (- / ⬇️). The Password setting range is 0000 to 9999. The default Password is "0000"
After editing the New Password, press the Edit key. The settable number will stop blinking. **
Press the (- / ⬇️) key to move to the next option. *

Com Port
USB

Press the Edit key the text will blinking.
By using the (+ / ⬆️) or (- / ⬇️) key, Com Port can be set i.e. USB / RP
After selecting the desired Com Port, press the Edit key. The text will stop blinking. **
Press the (- / ⬇️) key to move to the next option. *

Frequency
50Hz

The window displays the first setting of the System Data menu.
Press the (◄) key to move to the next option.
View settings

SYSTEM DATA	By using the (+ / ←) or (- / →) key, select the System Data setting menu. Press the (- / →) key to move to the next option.
Language	This window shows the user interface Language. Press the (+ / ←) key to move to the next option. ***
Description	This window shows Description of the relay. Press the (+ / ←) key to move to the next option. ***
Model Number	This window shows Model Number of the relay. Press the (+ / ←) key to move to the next option. ***

Note:

- If the function is set as **enable** then the relay will allow editing the settings of respective sub menus. If the function is set as **disable** then the relay will not allow editing the settings.

- The User can scroll the previous settings by using the (+ / ←) key.

- After Editing any sub menus of the SYSTEM DATA setting, If the SET / (●) key is pressed, the Relay displays SET to SAVE the changes or RESET to CANCEL the changes.
5 Configuration

- **Serial Number**
 - 14EP15D0001
 - This window shows the Serial number of the relay. Press the (+ / -) key to move to the next option. ***

- **Software Version**
 - P15D_1_____V1.05
 - This window shows the software version of the relay. Press the (+ / -) key to move to the next option. ***

- **Frequency**
 - 50Hz
 - This window shows the System Frequency setting done previously. Press the (+ / -) key to move to the next option. ***

- **Com Port**
 - USB
 - This window shows the Com Port setting done previously. Press the (+ / -) key to move to the next option. ***

- **USB Address**
 - 001
 - This window shows the USB Address setting of the relay. Press the (+ / -) key to move to the next option. ***

- **USB Parity**
 - None
 - This window shows the USB Parity setting of the relay. Press the (+ / -) key to move to the next option. ***

- **USB Baudrate**
 - 57600 BPS
 - This window shows the USB Baudrate setting of the relay. Press the (+ / -) key to move to the next option. ***

- **Active Group**
 - Group 1
 - This window shows the Active Group setting of the relay. Press the (+ / -) key to move to the next option. ***

- **OptoInput**
 - 4321
 - This window shows status of Digital inputs. Press the (+ / -) key to move to the next option. ***
 - **Status**
 - 0000
2.3.19 VIEW RECORDS menu

2.3.19.1 View contents

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLY O/P STATUS</td>
<td>This window shows latch relay status. Press the (+ /) key to move to the next option. ***</td>
</tr>
<tr>
<td>LATCH RLY = OFF</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>The window displays the first setting of System Data. Press the (↓) or (↑) key to return to the Main Menu.</td>
</tr>
<tr>
<td>English</td>
<td></td>
</tr>
<tr>
<td>SYSTEM DATA</td>
<td></td>
</tr>
</tbody>
</table>

*Note: *** By using the (↓) or (↑) key the relay will return to Main Menu.*
Undercurr Flt
l<:

This window will show trip flag of under current operated.
Press the (+ / −) key to move to the next option. ***

Trip Counter
t:0000

This window will show Trip Counter.
Press the (+ / −) key to move to the next option. ***

Fa =0.000 b =0.000
c =0.000 n =0.000

This window will show secondary fault current values.
Press the (+ / −) key to move to the next option. ***

Trip Timing (Sec)
00000.000

This window will show Trip Timings.
Press the (+ / −) key to move to the next option. ***

Thermal State
0000%

This window will show Thermal State.
Press the (+ / −) key to move to the next option. ***

21/02/14
16:15:30.225

This window will show Date & Time of fault.
Press the (+ / −) key to move to the next option. ***

I>1: I>2:
I>3: SF:
The window displays the first setting of the Fault Number of View record menu.
Press the (◄) or (►) key to return to the Main Menu.

VIEW RECORDS

Note: *** By using the (◄) or (►) key the relay will return to Main Menu.
2.3.19.2 View Error Log

<table>
<thead>
<tr>
<th>VIEW RECORDS</th>
<th>By using the (+ / ◄) or (- / ►) key, select the View Records setting menu. Press the (- / ►) key to move to the next option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Record</td>
<td>This window shows the Fault Record. Press the (+ / ◄) key to move to the next option.</td>
</tr>
<tr>
<td>Error Log: 0000</td>
<td>This window will show Error Log 0000 detected by self supervision function of Relay. Press the (◄) or (►) key to return to the Main Menu.</td>
</tr>
<tr>
<td>VIEW RECORDS</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Configuration flowcharts

2.4.1 Main Menu

After the Power ON or when the relay is reset the following windows will be displayed, and the user can scroll through the main menu as below.
2.4.2 View Measurement menu

```
A=0000 A  B=0000 A
C=0000 A  N=0000 A
a=00.00   b=00.00
c=00.00   n=00.00
Thermal State
0000%
```
2.4.3 Edit/View CB Control menu settings

- CB CONTROL
 - Password = 0000
 - Trip Test Enabled
 - Trip Block Enabled
 - Latch Relay Enabled

- SET For Save
- RESET For Cancel

- OK
 - SET
 - RESET
2.4.4 Edit/View Date and Time menu settings

2.4.4.1 Edit settings

Password = 0000

DATE AND TIME

Local Time Enable

Fixed

Local Time Offset

+000 Mins

DST Enable

Yes

DST Offset

60 Mins

DST Start

Last

DST Start Day

Sunday

DST Start Month

March

DST Start Mins

0060 Mins

DST End

Last

DST End Day

Sunday

DST End Month

October

DST End Mins

0060 Mins

RP Time Zone

Local

SET For Save

 RESET For Cancel

SET Hours

12

SET Minutes

55

SET Seconds

10

SET Date

16

SET Month

02

SET Year

14

OK

SET

RESET
2.4.4.2 View settings

- **DATE AND TIME**
 - **Tm:** 15:17:11
 - **Dt:** 12:07:14 Sat

- **Local Time Enable**
 - **Fixed**

- **Local Time Offset**
 - +000 Mins

- **DST Enable**
 - **Yes**

- **DST Offset**
 - 60 Mins

- **DST Start**
 - **Last**

- **DST Start Day**
 - **Sunday**

- **DST Start Month**
 - **March**

- **DST End**
 - **Last**

- **DST End Day**
 - **Sunday**

- **DST End Month**
 - **October**

- **DST End Mins**
 - 0060 Mins

- **DST Start Mins**
 - 0050 Mins

- **RP Time Zone**
 - **Local**
2.4.5 Edit/View Configuration menu settings

2.4.5.1 Edit settings

Password = 0000

CONFIGURATION

Restore Defaults
No Operation

Active Settings
Group 1

Setting Group 1
Enabled

Setting Group 2
Enabled

System Config
Enabled

Overcurrent
Enabled

Earth Fault
Enabled

Thermal Overload
Enabled

Cold Load Pickup
Enabled

Measure I Setup
ABC

UnderCurr Prot
Enabled

Setting Value
Secondary

OK

SET For Save
RESET For Cancel
2.4.5.2 View settings

- Restore Defaults
 - No Operation

- Active Settings
 - Group 1

- Setting Group 1
 - Enabled

- Setting Group 2
 - Disabled

- System Config
 - Enabled

- Overcurrent
 - Enabled

- Earth Fault
 - Enabled

- Thermal Overload
 - Enabled

- Cold Load Pickup
 - Enabled

- Measure’t Setup
 - ABC

- Undercurr Prot
 - Enabled

- Setting Value
 - Secondary
2.4.6 Edit/View CT and VT Ratios menu settings

CT AND VT RATIOS

Password = 0000

Phase CT Primary
00100 A

E/F CT Primary
00100 A

SET For Save
RESET For Cancel

Phase CT Primary
00100 A

E/F CT Secondary
00001 A

Phase CT Sec'y
00001 A

OK

SET
RESET

E/F CT Primary
00100 A
2.4.7 Edit/View Record Control menu settings

- Password = 0000
- Clear Events
 - No
- Clear Faults
 - No
- Clear Dist Recs
 - No
- Clear Maint
 - No
- Thermal Reset
 - No
- SET For Save
 - RESET For Cancel

OK

SET

RESET
2.4.8 Edit/View Communication menu settings

Password = 0000

RP1 Address
001

RP1 Baudrate
57600 BSP

RP1 Parity
Even

RP1 Timesync
Disabled

SET For Save
RESET For Cancel

OK

RP1 Address
001

RP1 Baudrate
57600 BSP

RP1 Parity
Even

RP1 Timesync
Disabled
2.4.9 Edit/View Group 1 menu settings

Password = 0000

GROUP 1

SYSTEM CONFIG

OVER CURRENT

EARTH FAULT

THERMAL OVERLOAD

COLDLOAD PICKUP

UNDERCURR PROT

Note:
**** Moves to respective settings parameters of the Protection Function.

OK

SET For Save
RESET For Cancel

SET

RESET
2.4.10 Edit/View GROUP 1- SYSTEM CONFIG sub menu settings

2.4.10.1 If 2nd Harmonic is Disabled

- Set For Save
- Reset For Cancel
- OK
- System Config
- 2nd Harmonic
- Disabled
- Group 1
- Set for save
- Reset for cancel

2.4.10.2 If 2nd Harmonic is Enabled

- System Config
- II/IFT 2H
- 10.00 A
- 2nd Harm Thresh
- 020
- Set for save
- Reset for cancel
- OK
2.4.11 Edit/View Group 1- Overcurrent sub menu settings

2.4.11.1 If I>1 Function is Disabled

![Diagram showing the configuration process]

- SET For Save
- RESET For Cancel
- I>1 Functions Disabled
- OVER CURRENT
- GROUP 1
- OK
- SET
- RESET
2.4.11.2 For I>1 Function set for IEC curve

- **I>1 Functions**
 - IEC S Inverse 1

- **I>1 Current Set**
 - 1.00 A

- **I>1 TMS**
 - 001.00

- **I>1 tRESET**
 - 001.00

- **I=1 2H Blocking**
 - Enabled

- **OVER CURRENT**

- **GROUP 1**

- **OK**

- **SET For Save**
 - SET

- **RESET For Cancel**
 - RESET
2.4.11.3 If I>1 Function set for IEEE curve

- I>1 Functions
 - US ST Inverse

- I>1 Current Set
 - 1.00 A

- I>1 Time Dial
 - 001.00

- I>1 tRESET
 - 001.00

- I>1 2H Blocking
 - Enabled

- GROUP 1

- OVER CURRENT

- SET For Save
 - RESET For Cancel

- SET

- OK

- RESET
2.4.11.4 If I>1 Function set for Definite Time

- I>1 Functions
- DT

- I>1 Current Set
 - 1.00 A

- I>1 Time Delay
 - 001.00

- I>1 tRESET
 - 001.00

- I>1 2H Blocking
 - Enabled

- OVER CURRENT

- SET For Save
- RESET For Cancel

- OK

- SET
- RESET

GROUP 1
2.4.12 Edit/View Group 1- Earth Fault sub menu settings

2.4.12.1 If IN>1 Function is Disabled

![Diagram showing the configuration process for Earth Fault sub menu settings.](image)
If IN>1 Function is set for IEC curve

- IN>1 Functions
 - IEC S Inverse 1

- IN>1 Current Set
 - 0.20 A

- IN>1 TMS
 - 1.000

- IN>1 RESET
 - 001.00

- IN>1 H Blocking
 - Enabled

- EARTH FAULT

- GROUP 1

- OK

- SET For Save
 - RESET For Cancel
2.4.12.3 If IN>1 Function is set for IEEE curve

- IN>1 Functions
 - US ST Inverse

- IN>1 Current Set
 - 0.20 A

- IN>1 Time Dial
 - 001.00

- IN>1 tRESET
 - 001.00

- IN>1 2H Blocking
 - Enabled

- OK
 - SET
 - RESET

- SET For Save
 - RESET For Cancel

- GROUP 1
2.4.12.4 If IN>1 Function is set for Definite Time

- IN>1 Functions
 - DT
- IN>1 Current Set
 - 0.20 A
- IN>1 Time Delay
 - 001.00
- IN>1 IRESET
 - 001.00
- IN>1 2H Blocking
 - Enabled

GROUP 1

OK

SET For Save
RESET For Cancel

EARTH FAULT

SET
RESET
2.4.13 Edit/View Group 1-Thermal Overload sub menu setting

2.4.13.1 If the Characteristic is set to Disabled

2.4.13.2 If the Characteristic is set to Single
2.4.14 Edit/View Group 1-Cold Load Pickup sub menu settings

2.4.14.1 Edit/View Cold Load Pickup Protection menu settings

Diagram:

- **COLDLOAD PKP**
 - **Tcold Time Delay**
 - 01500
 - **Tclp Time Delay**
 - 01500
 - **I>1 Status**
 - Enabled
 - **I>2 Status**
 - Enabled
 - **I>3 Status**
 - Enabled
 - **IN>1 Status**
 - Enabled
 - **IN>2 Status**
 - Enabled
 - **IN>3 Status**
 - Enabled

- **GROUP 1**
 - **OK**
 - **SET For Save**
 - **RESET For Cancel**
 - **SET**
 - **RESET**
2.4.14.2 Edit/View Cold Load Pickup - I>1 sub menu settings

NOTE: If the curve selection in over current is IEC, then the flow chart will be as follows.

Note: Flow chart for COLD LOAD PICKUP for I>2, I>3, IN>1, IN>2 and IN>3 is same as above.
2.4.15 Edit/View Group 1-Undercurr Prot. Sub menu settings

2.4.15.1 If I< Status is set to Disabled

2.4.15.2 If I< Status is set to Enabled
2.4.16 Edit/View Group 2 menu settings

Password = 0000

SYSTEM CONFIG

OVER CURRENT

EARTH FAULT

THERMAL OVERLOAD

COLDLOAD PICKUP

UNDERCURR PROT

Note:
**** Moves to respective settings parameters of the Protection Function.

OK

SET For Save

RESET For Cancel
2.4.17 Edit/View System Data menu settings

2.4.17.1 Edit settings

Note: The Flow chart for Protection function settings in Group 2 is identical to Group 1.

SYSTEM DATA

- Frequency
 50Hz
- Password
 0001
- Com Port
 USB

OK

SET For Save
RESET For Cancel
2.4.17.2 View settings

- Language: English
- Description: P50 Agile P15D
- Model Number: P15D211A1A0010A
- Serial Number: 14CP15D0001
- Software Version: P15D_1_ _ _ _ _ V1.05
- Frequency: 50Hz
- Com Port: USB
- USB Address: 001
- USB Baudrate: 57600 BPS
- USB Parity: none
- Active Group: Group 1
- OptoInput: 4321
- Status: 0000
- Relay O/P Status: LATCH RLY = OFF
- Default USB Address: 001
- Default USB Baudrate: 57600 BPS
- Default USB Parity: none
- Default Active Group: Group 1
- Default OptoInput: 4321
- Default Status: 0000
- Default Relay O/P Status: LATCH RLY = OFF
2.4.18 Edit/View Records menu

2.4.18.1 View Fault Record

```
VIEW RECORDS

Fault Record

Fault Num = 01

Fault Num = 02

Fault Num = 03

Fault Num = 04

Fault Num = 05

VIEW RECORDS

I>1 :     I>2 :     I>3 :     SF :

Undercurr Flt
i< :

Trip Counter
t : 0000

Fa=0.000  b=0.000
c=0.000    n=0.000

Trip Timing (Sec)
00000.00

Thermal State
0000%

20/02/2014
16:15:50:650
```
Note: The flow chart to view fault 2, fault 3, fault 4 & fault 5 is identical to fault 1.

2.4.18.2 View Error Logs
CHAPTER 6
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chapter overview</td>
</tr>
<tr>
<td>2</td>
<td>Protection functions</td>
</tr>
<tr>
<td>2.1</td>
<td>Overcurrent/Earth Fault function</td>
</tr>
<tr>
<td>2.1.1</td>
<td>IDMT Characteristics</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Principle of Protection Function Implementation</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Timer Hold Facility/Reset Characteristics</td>
</tr>
<tr>
<td>2.2</td>
<td>Thermal Overload Function</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Thermal Overload protection implementation</td>
</tr>
<tr>
<td>2.3</td>
<td>Undercurrent protection function</td>
</tr>
<tr>
<td>2.4</td>
<td>Cold Load Pickup function</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Cold Load Pickup logic</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Cold Load Pickup for SWITCH ONTO FAULT condition</td>
</tr>
<tr>
<td>2.5</td>
<td>Inrush Current Blocking function (2ND Harm Blocking)</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Second Harmonic Blocking Implementation</td>
</tr>
</tbody>
</table>
2 PROTECTION FUNCTIONS

2.1 Overcurrent/Earth Fault function

Most power system faults result in an overcurrent of some kind. It is the job of protection devices, formerly known as relays but now known as Intelligent Electronic Devices (IEDs), to protect the power system from such faults. The general principle is to isolate the faults as quickly as possible to limit the danger and prevent unwanted fault currents flowing through systems, which can cause severe damage to equipment and systems. At the same time, we wish to switch off only the parts of the grid that are absolutely necessary, to prevent unnecessary blackouts. The protection devices that control the tripping of the grid’s circuit breakers are highly sophisticated electronic units, providing an array of functionality to cover the different fault scenarios for a multitude of applications.

The described products offer a range of overcurrent protection functions including:

- Phase Overcurrent protection
- Earth Fault Overcurrent protection

To ensure that only the necessary circuit breakers are tripped and that these are tripped with the smallest possible delay, the IEDs in the protection scheme need to co-ordinate with each other. Various methods are available to achieve correct co-ordination between IEDs in a system.

These are:

- By means of time alone
- By means of current alone
- By means of a combination of both time and current.

Grading by means of current is only possible where there is an appreciable difference in fault level between the two locations where the devices are situated. Grading by time is used by some utilities but can often lead to excessive fault clearance times at or near source substations where the fault level is highest. For these reasons the most commonly applied characteristic in co-ordinating overcurrent devices is the IDMT (Inverse Definite Minimum Time) type.

The relay is designed for three stages programmable OC and EF functions. All three stages of overcurrent and earth fault protection function are programmable as Inverse Definite Minimum Time (IDMT) or Definite Time (DT) delay.

2.1.1 IDMT Characteristics

All three stages of OC and EF functions are programmable as per IDMT characteristic based on IEC and IEEE standards. The inverse time delay is calculated with the following mathematical formula:

\[t = T \left(\frac{K}{I_{i}} \right)^{\alpha} + L \]
Where;

- **t**: Operation time
- **K**: Constant (see the table)
- **I**: Measured current
- **Is**: Current threshold setting
- **α**: Constant (see the table)
- **L**: ANSI/IEEE constant (zero for IEC curve)
- **T**: Time multiplier setting (TMS) for IEC curves
- **T**: Time dial setting (TD) for IEEE curves

Table 6.1 Description of Protection Functions

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
<th>K</th>
<th>α</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Time</td>
<td>DT</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Standard Inverse</td>
<td>IEC</td>
<td>0.14</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Standard Inverse</td>
<td>IEC</td>
<td>0.06</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEC</td>
<td>13.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>IEC</td>
<td>80</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td>UK</td>
<td>120</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Moderate Inverse</td>
<td>IEEE</td>
<td>0.0515</td>
<td>0.02</td>
<td>0.114</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEEE</td>
<td>19.61</td>
<td>2</td>
<td>0.491</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>IEEE</td>
<td>28.2</td>
<td>2</td>
<td>0.1217</td>
</tr>
<tr>
<td>US Inverse</td>
<td>CO8</td>
<td>5.95</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>US Short Time Inverse</td>
<td>CO2</td>
<td>0.0239</td>
<td>0.02</td>
<td>0.0169</td>
</tr>
</tbody>
</table>

2.1.2 Principle of Protection Function Implementation

An energising quantity is a current input from a system current transformer or another quantity derived from the current input. The energising quantities are extracted from the power system and presented to the IED in the form of analogue signals. These analogue signals are then converted to digital quantities where they can be processed by the IEDs internal processor.

In general, an energising quantity is compared with a threshold value, which may be settable or hard-coded depending on the function. If the quantity exceeds (for overvalues) or falls short of (for undervalues) the threshold, a signal is produced, which when gated with the various inhibit and blocking functions becomes the Start signal for that protection function. This Start signal is generally made available to Fixed Scheme logic for further processing. It is also passed through a timer function to produce the Trip signal. The timer function may be an IDMT curve, or a Definite Time delay, depending on the function. The timer can be configured by a range of settings to define such parameters as the type of curve, The Time Multiplier Setting, the IDMT constants and Definite Time delay.

In P15D there are several independent stages for each of the functions. Typically in P15D stages 1 and 2 use an DT/IDMT timer function, whilst stage 3 uses a Definite Time timer function. If the DT time delay is set to '0', then the function is known to be "instantaneous". In many instances the term "instantaneous protection" is used loosely to describe Definite Time protection stages even when the stage may not theoretically be instantaneous.

2.1.3 Timer Hold Facility/Reset Characteristics

This feature may be useful in certain applications, such as when grading with upstream electromechanical overcurrent relays, which have inherent reset time delays. If you set the hold timer to a value other than zero, the resetting of the protection element timers will be delayed for this period. This allows the element to behave in a similar way to an electromechanical relay. If you set the hold
timer to zero, the overcurrent timer for that stage will reset instantaneously as soon as the current falls below a specified percentage of the current setting (typically 95%).

Another possible situation where the timer hold facility may be used to reduce fault clearance times is for intermittent faults. An example of this may occur in a plastic insulated cable. In this application it is possible for the fault energy to melt and reseal the cable insulation, thereby extinguishing the fault. This process repeats to give a succession of fault current pulses, each of increasing duration with reducing intervals between the pulses, until the fault becomes permanent.

When the reset time is instantaneous, the device will repeatedly reset and not be able to trip until the fault becomes permanent. By using the Timer Hold facility the device will integrate the fault current pulses, thereby reducing fault clearance time.

The timer hold facility is available to all three stages of OC and EF functions.

The Definite Time Reset characteristic is applicable for IEC curves / DT.

The value of the Reset Timer depends on the type of the timer associated to the pick-up phase (Earth) threshold.

<table>
<thead>
<tr>
<th>Type of timer associated with phase (earth) threshold</th>
<th>Reset Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Powered</td>
<td>DT</td>
</tr>
<tr>
<td>- For DT time delay</td>
<td>DT</td>
</tr>
<tr>
<td>- For IDMT time delay</td>
<td>DT</td>
</tr>
<tr>
<td>Aux. Powered</td>
<td></td>
</tr>
<tr>
<td>- For DT time delay</td>
<td>DT</td>
</tr>
<tr>
<td>- For IDMT time delay</td>
<td>DT</td>
</tr>
</tbody>
</table>

The range of DT time setting is 0 – 100 sec in steps of 0.01 sec.

Note: For aux. powered P15D relay, if load current reduces below minimum value required to keep relay energised, then the HOLD/RESET timer will reset to zero.

2.2 Thermal Overload Function

The heat generated within an item of plant, such as a cable or a transformer, is the resistive loss (I^2Rt). The thermal time characteristic is therefore based on the square of the current integrated over time. The device automatically uses the largest phase current for input to the thermal model.

The equipment is designed to operate continuously at a temperature corresponding to its full load rating, where the heat generated is balanced with heat dissipated. Over-temperature conditions occur when currents in excess of their maximum rating are allowed to flow for a period of time. It is known that temperature changes during heating follow exponential time constants.

The device provides single time constant characteristic which is used to protect cables, dry type transformers (e.g. type AN), and capacitor banks.

Thermal overload protection is designed to prevent the electrical equipment when operating temperature is exceeded the maximum designed temperature. The fundamental currents are measured and analysed to monitor the thermal state. In case of thermal overload function the calculation of the Time to Trip is given by:

$$t = \tau \ln \left(\frac{(K^2 - A)}{(K^2 - Th. Trip)} \right)$$

Where:

t: Time to trip (in seconds)

τ: Thermal time constant (Te, in seconds) of the equipment to be protected
K: Thermal overload equal to (Ieq / k* IFL)

Where:

Ieq: Equivalent current corresponding to the largest phase current
IFL: Full load current rating (settable)
k: Settable (1 to 1.5 step 0.01)

A: Initial thermal state. If the initial thermal state is 30% then A = 0.3
Th. Trip: Trip thermal state. If the trip thermal state is set at 100%, then Th. Trip is 1

The calculation of the thermal state is given by the following formula:

$$\bar{\theta}_{i+1} = (\frac{I_{eq}}{k*IFL})^2 \cdot [1 - \exp(-t/Te)] + \bar{\theta}_i \cdot \exp(-t/Te)$$

Figure 1: Thermal Overload curve
2.2.1 Thermal Overload protection implementation

The device incorporates a current-based thermal characteristic, using fundamental load current to model heating and cooling of the protected plant. The element can be set with both alarm and trip stages.

Thermal Overload protection is implemented in the THERMAL OVERLOAD column of the relevant settings group. The magnitudes of the three phase input currents are compared and the largest magnitude is taken as the input to the thermal overload function.

Thermal over load function supports setting for alarm and trip stages. If the thermal overload function is enabled and thermal state of the protected equipment exceeds the alarm threshold setting, the alarm is issued and indicated by illuminated START LED on the relay front panel.

If the thermal overload function is enabled and thermal state of the protected equipment exceeds the Trip threshold setting, a trip command is issued resulting in operation of output contacts and generation of low energy pulse output. Trip condition is indicated by illuminated TRIP LED.

The thermal state measurement is made available in the MEASUREMENTS menu.

The thermal state can be reset from the HMI panel by pressing front panel Touch key RESET / EDIT + PROT. RESET

2.3 Undercurrent protection function

The relay includes undercurrent elements that can be used to provide additional functions to prevent damage to the power system. This function allows typical applications such as loss of load. The undercurrent protection function is available only if the auxiliary contact of the CB status is connected to the relay, for example, when NO contact of CB is high.

Note: For proper operation of this function the relay should have auxiliary power supply.

2.4 Cold Load Pickup function

When a feeder circuit breaker is closed in order to energise a load, the current levels that flow for a period of time following energisation may be far greater than the normal load levels. Consequently, overcurrent settings that have been applied to provide overcurrent protection may not be suitable during this period of energisation (cold load), as they may initiate undesired tripping of the circuit breaker. This scenario can be prevented with Cold Load Pickup (CLP) functionality.

The Cold Load Pickup (CLP) logic works by either:

- Inhibiting one or more stages of the overcurrent protection for a set duration
- Raising the overcurrent settings of selected stages, for the cold loading period.

The CLP logic therefore provides stability, whilst maintaining protection during the start-up.

Cold Load Pickup Protection is implemented in the COLD LOAD PICKUP column of the relevant settings group.

This function acts on the following protection functions:

- All overcurrent stages
- All Earth Fault stages

The principle of operation is identical for the 3-phase overcurrent protection and Earth Fault overcurrent protection.
CLP operation occurs when the circuit breaker remains open for a time greater than t_{cold} and is subsequently closed. CLP operation is applied after t_{cold} and remains for a set time delay of t_{clp} following closure of the circuit breaker. The status of the circuit breaker is provided by means of the CB auxiliary contacts. Whilst CLP operation is in force, the CLP settings are enabled. After the time delay t_{clp} has elapsed, the normal overcurrent settings are applied and the CLP settings are disabled.

If desired, instead of applying different current setting thresholds for the cold load time, it is also possible to completely block the overcurrent operation during this time, for any of the overcurrent stages.

2.4.1 Cold Load Pickup logic

The CLP logic is in operation when CLP is enabled AND CLP is initiated from a CB open condition after the t_{cold} period has elapsed. The CLP logic becomes inactive when CLP is disabled or when there is a CB closed condition. t_{cold} and t_{clp} are initiated using the CB status signal produced by connecting CB NO auxiliary contact from the circuit breaker. The CLP logic gets driven from a single breaker contact.

2.4.2 Cold Load Pickup for SWITCH ONTO FAULT condition

In some feeder applications, fast tripping may be required if a fault is already present on the feeder when it is energized. Such faults may be due to a fault condition not having been removed from the feeder, or due to earthing clamps having been left on following maintenance. In either case, it is desirable to clear the fault condition quickly, rather than waiting for the time delay imposed by IDMT overcurrent protection. The CLP logic can cater for this situation. Selected overcurrent/earth fault stages could be set to instantaneous operation for a defined period following circuit breaker closure (typically 200 ms). Therefore, instantaneous fault clearance would be achieved for a switch onto fault (SOTF) condition.

2.5 Inrush Current Blocking function (2ND Harm Blocking)

When a transformer is initially connected to a source of AC voltage, there may be a substantial surge of current through the primary winding called inrush current. This is analogous to the inrush current exhibited by an electric motor that is started up by sudden connection to a power source, although transformer inrush is caused by a different phenomenon.

In an ideal transformer, the magnetizing current would rise to approximately twice its normal peak value as well, generating the necessary MMF to create this higher-than-normal flux. However, most transformers are not designed with enough of a margin between normal flux peaks and the saturation limits to avoid saturating in a condition like this, and so the core will almost certainly saturate during this first half-cycle of voltage. During saturation, disproportionate amounts of MMF are needed to generate magnetic flux. This means that winding current, which creates the MMF to cause flux in the core, could rise to a value way in excess of its steady state peak value. Furthermore, if the transformer happens to have some residual magnetism in its core at the moment of connection to the source, the problem could be further exacerbated.

We can see that inrush current is a regularly occurring phenomenon and should not be considered a fault, as we do not wish the protection device to issue a trip command whenever a transformer or machine is switched on. This presents a problem to the protection device, because it should always trip on an internal fault. The problem is that typical internal transformer faults may produce overcurrents which are not necessarily greater than the inrush current. Furthermore, faults tend to manifest themselves on switch on, due to the high inrush currents. For this reason, we need to find a mechanism that can distinguish between fault current and inrush current. Fortunately, this is possible due to the different natures of the respective currents. An inrush current waveform is rich in harmonics, whereas an internal fault current consists only of the fundamental. We can thus develop a restraining method based on the harmonic content of the inrush current. The mechanism by which this is achieved is called second harmonic blocking.
2.5.1 Second Harmonic Blocking Implementation

Second harmonic blocking can be applied to the following overcurrent protection types:

- Phase Overcurrent protection
- Earth Fault protection

Second harmonic blocking is implemented in the GROUP (n) SYSTEM CONFIG column, where (n) is the number of the setting group.

Second harmonic blocking is applicable to all stages of each of the elements.

The function works by identifying and measuring the inrush currents present at switch on. It does this by comparing the value of the second harmonic current components to the value of the fundamental component. If this ratio exceeds the set thresholds, then the blocking signal is generated. The threshold is defined by the 2ndHarm Thresh setting.

We only want the function to block the protection if the fundamental current component is within the normal range. If this exceeds the normal range, then this is indicative of a fault, which must be protected. For this reason there is another settable trigger I> lift 2H, which when exceeded, stops the 2nd harmonic blocking function.

Each overcurrent protection element has a I>Blocking setting with which the type of blocking is defined.
CHAPTER OVERVIEW

This chapter consists of the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chapter overview</td>
</tr>
<tr>
<td>2</td>
<td>Protection Parameter Settings</td>
</tr>
<tr>
<td>2.1</td>
<td>System Data</td>
</tr>
<tr>
<td>2.2</td>
<td>CB Control settings</td>
</tr>
<tr>
<td>2.3</td>
<td>Date and Time settings</td>
</tr>
<tr>
<td>2.4</td>
<td>Configuration settings</td>
</tr>
<tr>
<td>2.5</td>
<td>CT and VT Ratio settings</td>
</tr>
<tr>
<td>2.6</td>
<td>Record Control settings</td>
</tr>
<tr>
<td>2.7</td>
<td>Communication settings</td>
</tr>
<tr>
<td>2.8</td>
<td>Group settings</td>
</tr>
<tr>
<td>2.8.1</td>
<td>System Config settings</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Overcurrent settings</td>
</tr>
<tr>
<td>2.8.2.1</td>
<td>I>1 Function</td>
</tr>
<tr>
<td>2.8.2.2</td>
<td>I>2 Function</td>
</tr>
<tr>
<td>2.8.2.3</td>
<td>I>3 Function</td>
</tr>
<tr>
<td>2.8.3</td>
<td>EARTH FAULT (Measured)</td>
</tr>
<tr>
<td>2.8.3.1</td>
<td>IN>1 Function</td>
</tr>
<tr>
<td>2.8.3.2</td>
<td>IN>2 Function</td>
</tr>
<tr>
<td>2.8.3.3</td>
<td>IN>3 Function</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Thermal Overload</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Undercurrent</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Cold Load Pickup</td>
</tr>
</tbody>
</table>
2 PROTECTION PARAMETRE SETTINGS

2.1 System Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
<td>Not Editable</td>
</tr>
<tr>
<td>Description</td>
<td>P50 Agile P15D</td>
<td>Not Editable</td>
</tr>
<tr>
<td>Model Number</td>
<td>P15DxxxxxxAxxxxxA</td>
<td>Not Editable</td>
</tr>
<tr>
<td>Serial Number</td>
<td>xxxP15Dxxxxxx</td>
<td>Not Editable</td>
</tr>
<tr>
<td>Software Version</td>
<td>P15D_x_x_x_v.x.x</td>
<td>Not Editable</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz</td>
<td>50Hz / 60Hz</td>
</tr>
</tbody>
</table>

This cell sets the frequency to either 50 Hz or 60 Hz.

<table>
<thead>
<tr>
<th>Com Port</th>
<th>USB /RP</th>
<th>This setting allows you to select the front port (USB) or rear port (RS485) for communication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>0000</td>
<td>This cell allows you to set new password.</td>
</tr>
<tr>
<td>USB Address</td>
<td>1</td>
<td>This cell displays the address for the front USB port of the relay.</td>
</tr>
<tr>
<td>USB Parity</td>
<td>None</td>
<td>This cell displays the parity format used in the data frames.</td>
</tr>
<tr>
<td>USB Baud rate</td>
<td>57600</td>
<td>This cell sets the communication speed between relay and configuration tool.</td>
</tr>
<tr>
<td>Active Group</td>
<td>Group 1</td>
<td>This setting displays the active setting group as selected in CONFIGURATION menu.</td>
</tr>
</tbody>
</table>

2.2 CB Control settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default Setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
</tbody>
</table>

This setting specifies to enter the set password.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default Setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Trip Test</td>
<td>Disabled</td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

This setting enables or disables Trip Test function. When the function is enabled and the Trip Test key is pressed, the relay immediately provides trip command. This trip command is also extended to breaker coil, so the entire trip operation from relay to circuit breaker can be checked.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default Setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Latch Relay</td>
<td>Disabled</td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

This setting activates or deactivates the Latch Relay function.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default Setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Trip Block</td>
<td>Disabled</td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

This setting enables or disables the Trip Block function. By enabling this function, the user can block the trip command.

2.3 Date and Time settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
</tbody>
</table>

This setting specifies to enter the set password.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Local Time</td>
<td>Fixed</td>
<td>Fixed / Flexible / Disabled</td>
</tr>
</tbody>
</table>
Protection Parameter Settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Local Time Offset</td>
<td>0 Mins</td>
<td>-720 to +720 mins step 15 mins</td>
</tr>
<tr>
<td>4</td>
<td>DST Enable</td>
<td>Yes</td>
<td>Yes / No</td>
</tr>
<tr>
<td>5</td>
<td>DST Offset</td>
<td>60 Mins</td>
<td>From 30 - 60 mins step 30 mins</td>
</tr>
<tr>
<td>6</td>
<td>DST Start</td>
<td>Last</td>
<td>First / Second / Third / Fourth / Last</td>
</tr>
<tr>
<td>7</td>
<td>DST Start Day</td>
<td>Sunday</td>
<td>Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday</td>
</tr>
<tr>
<td>8</td>
<td>DST Start Month</td>
<td>March</td>
<td>January/February/March/April/May/June/July/August/September/October/November/December</td>
</tr>
<tr>
<td>9</td>
<td>DST Start Mins</td>
<td>60 Mins</td>
<td>0 to 1425 mins step 15 mins</td>
</tr>
<tr>
<td>10</td>
<td>DST End</td>
<td>Last</td>
<td>First / Second / Third / Fourth / Last</td>
</tr>
<tr>
<td>11</td>
<td>DST End Day</td>
<td>Sunday</td>
<td>Sunday/Monday/Tuesday/Wednesday/Thursday/Friday/Saturday</td>
</tr>
<tr>
<td>12</td>
<td>DST End Month</td>
<td>October</td>
<td>January/February/March/April/May/June/July/August/September/October/November/December</td>
</tr>
<tr>
<td>13</td>
<td>DST End Mins</td>
<td>60 Mins</td>
<td>0 to 1425 mins step 15 mins</td>
</tr>
<tr>
<td>14</td>
<td>RP Time Zone</td>
<td>UTC</td>
<td>Local / UTC</td>
</tr>
<tr>
<td>15</td>
<td>SET Hours</td>
<td>15*</td>
<td>00 to 23 hrs step 1</td>
</tr>
<tr>
<td>16</td>
<td>SET Minutes</td>
<td>59*</td>
<td>00 to 59 mins step 1</td>
</tr>
<tr>
<td>17</td>
<td>SET Seconds</td>
<td>55*</td>
<td>00 to 59 step 1</td>
</tr>
<tr>
<td>18</td>
<td>SET Date</td>
<td>25*</td>
<td>1 to 31 days step 1</td>
</tr>
<tr>
<td>19</td>
<td>SET Month</td>
<td>03*</td>
<td>1 to 12 months step 1</td>
</tr>
</tbody>
</table>

This setting is used to turn on/off local time adjustments.

Fixed - A local time zone adjustment can be defined using the Local Time offset setting and all interfaces will use local time.

Flexible - A local time zone adjustment can be defined using the Local Time offset setting and each interface can be assigned to the UTC zone or local time zone with the exception of the local interfaces which will always be in the local time zone.

Disabled - No local time zone will be maintained. Time synchronization from any interface will be used to directly set the master clock and all displayed (or read) times on all interfaces will be based on the master clock with no adjustment.

Setting to specify an offset for local time zone from -12 to +12 hrs in 15 minute intervals. This adjustment is applied to the time based on UTC/GMT master clock.

This setting is used to turn on/off daylight saving time adjustment to local time.

Setting to specify daylight saving offset used for the local time adjustment.

This setting is used to specify the week of the month in which daylight saving time adjustment starts.

This setting is used to specify the day of the week in which daylight saving time adjustment starts.

This setting is used to specify the month in which daylight saving time adjustment starts.

This setting is used to specify the time of day in which daylight saving time adjustment starts. This is set relative to 00:00 hrs on the selected day when time adjustment is to start.

This setting is used to specify the week of the month in which daylight saving time adjustment ends.

This setting is used to specify the day of the week in which daylight saving time adjustment ends.

This setting is used to specify the month in which daylight saving time adjustment ends.

This setting is used to specify the time of day in which daylight saving time adjustment ends. This is set relative to 00:00 hrs on the selected day when time adjustment is to end.

Setting for the rear port 1 interface to specify if time synchronization received will be local or universal time co-ordinated.

The **Hour** setting is needed when the relay is not connected to SCADA system.

The **Minutes** setting is needed when the relay is not connected to SCADA system.

The **Seconds** setting is needed when the relay is not connected to SCADA system.

The **Date** setting is needed when the relay is not connected to SCADA system.

The **Month** setting is needed when the relay is not connected to SCADA system.
7 Protection Parameter Settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET Year</td>
<td>14*</td>
<td>00 to 99 years step 1</td>
</tr>
</tbody>
</table>

The **Year** setting is needed when the relay is not connected to SCADA system.

Note: *The relay displays the current Date/Time set in the relay.*

2.4 Configuration settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Defaults setting</th>
<th>Setting / Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
</tbody>
</table>

This setting specifies to enter the set password.

| 2. | Restore Defaults| No Operation | No Operation / All Settings / Setting Group 1 / Setting Group 2 |

This setting restores the chosen setting groups to factory default values.

To restore the default values to any Group, set the ‘restore defaults’ cell to the relevant Group number. Alternatively it is possible to set the ‘restore defaults’ cell to ‘all settings’ to restore the default values to all of the IED’s settings, not just the Group settings.

While editing the relay settings through UI, the new updated value is kept in a temporary memory. After editing all settings in a respective function, there is an option to save setting by pressing **SET** key or cancel changes by selecting **RESET** key. If **SET** key is pressed, relay saves the setting from temporary memory to actual setting file. If **RESET** key is pressed, relay discards the temporary memory.

Note: *If the key pad is left untouched for 100 sec, any changes made are aborted and the relay returns to the Main Menu.*

Restoring defaults to all settings includes the rear communication port settings, which may result in communication via the rear port being disrupted if the new (default) settings do not match those of the master station.

| 3. | Active Settings | Group 1 | Group 1 / Group 2 |

This setting selects the active settings group.

| 4. | Setting Group 1 | Enabled | Enabled |

This setting enables or disables settings Group 1. If the Setting Group 1 is enabled from the configuration setting, then all associated settings and signals are available in Group 1 setting menu. If the Setting Group 1 is disabled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

| 5. | Setting Group 2 | Disabled | Enabled / Disabled |

This setting enables or disables settings Group 2. If the Setting Group 2 is enabled from the configuration setting, then all associated settings and signals are available in Group 2 setting menu. If the Setting Group 2 is disabled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

| 6. | System Config | Disabled | Enabled / Disabled |

This setting hides or unhides the System Config menu. Inside the 2nd Harmonic blocking related parameters are present.

| 7. | Overcurrent | Enabled | Enabled / Disabled |

This setting is used to enable or disable the Phase Overcurrent Protection function. If it is disabled, then all associated settings and signals are hidden, with the exception of this setting.

| 8. | Earth Fault | Enabled | Enabled / Disabled |

This setting is used to enable or disable the Earth Fault Protection function.

| 9. | Thermal Overload| Disabled | Enabled / Disabled |

This setting is used to enable or disable the Thermal Overload function.

| 10. | Cold Load Pickup| Disabled | Enabled / Disabled |

This setting is used to enable or disable the Cold Load Pickup function.
2.5 CT and VT Ratio settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Defaults setting</th>
<th>Setting / Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
<tr>
<td>2.</td>
<td>Phase CT Primary</td>
<td>00100</td>
<td>0001 to 30000A in step 1A</td>
</tr>
<tr>
<td>3.</td>
<td>E/F CT Primary</td>
<td>00100</td>
<td>0001 to 30000A in step 1A</td>
</tr>
</tbody>
</table>

This setting specifies to enter the set password.

This setting determines the phase current transformer input primary current rating.

This setting determines the earth current transformer input primary current rating.

2.6 Record Control settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
<tr>
<td>2.</td>
<td>Clear Events</td>
<td>No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>3.</td>
<td>Clear Faults</td>
<td>No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>4.</td>
<td>Clear Dist Recs</td>
<td>No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>5.</td>
<td>Clear Maint</td>
<td>No</td>
<td>Yes / No</td>
</tr>
<tr>
<td>6.</td>
<td>Thermal Reset</td>
<td>No</td>
<td>Yes / No</td>
</tr>
</tbody>
</table>

Selecting “Yes” will erase the existing events stored in the relay.

Selecting “Yes” will erase the existing fault records from the relay.

Selecting “Yes” will erase the existing disturbance records from the relay.

Selecting “Yes” will erase the existing maintenance records from the relay.

Selecting “Yes” will reset the existing thermal state to zero.

2.7 Communication settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Password</td>
<td>0000</td>
<td>0000 to 9999</td>
</tr>
<tr>
<td>2.</td>
<td>RP1 Address</td>
<td>001</td>
<td>1 to 247 step 1</td>
</tr>
<tr>
<td>3.</td>
<td>RP1 Baud rate</td>
<td>57600 BPS</td>
<td>9600 / 14400 / 19200 / 28800 / 38400 / 57600 BPS</td>
</tr>
</tbody>
</table>

This setting specifies to enter the set password.

This setting sets the address of RP1.

This setting sets the communication speed between relay and master station. It is important that both relay and master station are set at the same speed setting.
Protection Parameter Settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>RP1 Parity</td>
<td>Even</td>
<td>Even / Odd / None</td>
</tr>
<tr>
<td>5.</td>
<td>RP1 Time sync</td>
<td>Disabled</td>
<td>Enabled / Disabled</td>
</tr>
</tbody>
</table>

This setting sets the parity format used in the data frames. It is important that both relay and master station are set with the same parity setting.

This setting enables or disables time synchronization with the master clock.

2.8 Group settings

The following settings are common to Group 1 and 2.

2.8.1 System Config settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2nd Harmonic</td>
<td>Disabled</td>
<td>Enabled / Disabled</td>
</tr>
<tr>
<td>2.</td>
<td>2nd Harm Thresh</td>
<td>20%</td>
<td>5% to 70% step 1%</td>
</tr>
<tr>
<td>3.</td>
<td>I>lift 2H</td>
<td>10.00*In</td>
<td>4 to 32In step 0.01In</td>
</tr>
</tbody>
</table>

This setting is used to enable or disable the 2nd Harmonic blocking of the overcurrent protection.

This setting is used to specify the 2nd Harm Threshold value. If the level of 2nd harmonic/fundamental in any phase current or neutral current exceeds the setting, the overcurrent protection will be blocked as selected.

The 2nd harmonic blocking is applied only when the fundamental current is above 2nd Harm Thresh and below I> lift setting. The reset levels are 95% of these thresholds.

2.8.2 Overcurrent settings

2.8.2.1 I>1 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I>1 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse 1.3Sec / IEC V Inverse / IEC E Inverse / UK LT Inverse / IEEE M Inverse / IEEE V Inverse / IEEE E Inverse / US Inverse / US ST Inverse</td>
</tr>
<tr>
<td>2.</td>
<td>I>1 Current Set</td>
<td>1*In</td>
<td>If DT 0.20 to 35.00In step 0.01In If IDMT 0.20 to 2.50In step 0.01In</td>
</tr>
<tr>
<td>3.</td>
<td>I>1 Time Delay</td>
<td>1 S</td>
<td>0 to 100s step 0.01s</td>
</tr>
<tr>
<td>4.</td>
<td>I>1 TMS</td>
<td>1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
</tbody>
</table>

This setting determines the tripping characteristic for the first stage overcurrent element.

This setting determines the pick-up setting for first stage overcurrent element.

This setting determines the time-delay for the definite time setting if selected for first stage overcurrent element.

This time multiplier setting is used to adjust the operating time of the IEC IDMT characteristic.

This time multiplier setting is used to adjust the operating time of the IEEE IDMT curves.

This setting determines the type of reset/release time for all type of curves.

This setting determines the enabling/disabling of blocking first stage overcurrent element due to presence of inrush current.

If I>1 Blocking and 2nd Harmonic both setting are enabled, then (I>1) trip command will be blocked in case 2nd harmonics content in any phase is above the 2nd Harm Thresh. and fundamental current is below I> lift 2H setting. (Set in SYSTEM CONFIG Menu.)
2.8.2.2 I>2 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I>2 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LT Inverse / IEC V Inverse / IEC E Inverse / IEEE V Inverse / IEEE E Inverse /</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US Inverse / US ST Inverse</td>
</tr>
</tbody>
</table>

This setting determines the tripping characteristic for the second overcurrent element.

2. I>2 Current Set 1*ln

If DT 0.20 to 35.00*ln step 0.01*ln
If IDMT 0.20 to 2.50*ln step 0.01*ln

This setting determines Pick-up setting for second stage overcurrent element.

3. I>2 Time Delay 1 S

This setting determines the time-delay for the definite time setting if selected for second stage overcurrent element.

4. I>2 TMS 1

This setting determines the time multiplier setting used to adjust the operating time of the IEC IDMT characteristic.

5. I>2 Time Dial 1

This setting determines the new time multiplier setting to adjust the operating time of the IEEE IDMT curves.

6. I>2 tRESET 0.01 S

This setting determines the reset/release time for all types of curve.

7. I>2 2H Blocking Disabled

This setting determines the enabling/disabling of blocking second stage overcurrent element due to presence of inrush current.

Notes
- If I>2 Blocking and 2nd Harmonic both setting are enabled, then I>2 trip command will be blocked in case 2nd harmonics content in any phase is above the 2ndHarm Thresh and fundamental current is below I> lift 2H setting. (Set in SYSTEM CONFIG Menu.)

2.8.2.3 I>3 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I>3 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LT Inverse / IEC V Inverse / IEC E Inverse / IEEE V Inverse / IEEE E Inverse /</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US Inverse / US ST Inverse</td>
</tr>
</tbody>
</table>

This setting determines the tripping characteristic for the third overcurrent element.

2. I>3 Current Set 1*ln

If DT 1.0 to 35.00*ln step 0.01*ln
If IDMT 0.20 to 2.50*ln step 0.01*ln

This setting determines Pick-up setting for second stage overcurrent element.

3. I>3 Time Delay 1 S

This setting determines the time-delay for the definite time setting if selected for second stage overcurrent element.

4. I>3 TMS 1

This setting determines the time multiplier setting used to adjust the operating time of the IEC IDMT characteristic.

5. I>3 Time Dial 1

This setting determines the new time multiplier setting to adjust the operating time of the IEEE IDMT curves.

6. I>3 tRESET 0.01 S

This setting determines the reset/release time for all types of curve.

7. I>3 2H Blocking Disabled

This setting determines the enabling/disabling of blocking second stage overcurrent element due to presence of inrush current.

Notes
- If I>2 Blocking and 2nd Harmonic both setting are enabled, then I>2 trip command will be blocked in case 2nd harmonics content in any phase is above the 2ndHarm Thresh and fundamental current is below I> lift 2H setting. (Set in SYSTEM CONFIG Menu.)
2.8.3 EARTH FAULT (Measured)

2.8.3.1 IN>1 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IN>1 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse 1.3Sec / IEC V Inverse / IEC E Inverse / UK LT Inverse / IEEE M Inverse / IEEE V Inverse / IEEE E Inverse / US Inverse / US ST Inverse</td>
</tr>
</tbody>
</table>

This setting determines the tripping characteristic for the first stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>IN >1 Current Set</td>
<td>1*In</td>
<td>If DT 0.10 to 35.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If IDMT 0.10 to 2.50In step 0.01In</td>
</tr>
</tbody>
</table>

This setting determines Pick-up setting for first stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>IN >1 Time Delay</td>
<td>1 S</td>
<td>0 to 200s step 0.01s</td>
</tr>
</tbody>
</table>

This setting determines the time-delay for the definite time setting, if selected for first stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>IN >1 TMS</td>
<td>1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
</tbody>
</table>

This setting determines the new time multiplier setting to adjust the operating time of the IEC IDMT characteristic.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>IN >1 Time Dial</td>
<td>1</td>
<td>0.01 to 100 step 0.01</td>
</tr>
</tbody>
</table>

This setting determines the time multiplier setting to adjust the operating time of the IEEE IDMT curves.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>IN >1 tRESET</td>
<td>0.01 S</td>
<td>0 to 100s step 0.01s</td>
</tr>
</tbody>
</table>

This setting determines the reset/release time for all type of curves.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>IN >1 2H Blocking</td>
<td>Disabled</td>
<td>Enabled / Disabled</td>
</tr>
</tbody>
</table>

This setting determines the enabling/disabling of blocking first stage of Earth fault element due to presence of inrush current.

If IN>1 Blocking and 2nd Harmonic both setting are enabled, then (IN>1) trip command will be blocked in case 2nd harmonics content in any phase is above the 2ndHarm Thresh and fundamental current is below I> lift 2H setting. (Set in SYSTEM CONFIG Menu.)

2.8.3.2 IN>2 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IN>2 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse 1.3Sec / IEC V Inverse / IEC E Inverse / UK LT Inverse / IEEE M Inverse / IEEE V Inverse / IEEE E Inverse / US Inverse / US ST Inverse</td>
</tr>
</tbody>
</table>

This setting determines the tripping characteristic for the second stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>IN >2 Current Set</td>
<td>1*In</td>
<td>If DT 0.10 to 35.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If IDMT 0.10 to 2.50In step 0.01In</td>
</tr>
</tbody>
</table>

This setting determines pick-up setting for second stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>IN >2 Time Delay</td>
<td>1 S</td>
<td>0 to 200s step 0.01s</td>
</tr>
</tbody>
</table>

This setting determines the time-delay for the definite time setting, if selected for second stage earth fault element.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>IN >2 TMS</td>
<td>1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
</tbody>
</table>

This setting determines the time multiplier setting to adjust the operating time of the IEC IDMT characteristic.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>IN >2 Time Dial</td>
<td>1</td>
<td>0.01 to 100 step 0.01</td>
</tr>
</tbody>
</table>

This setting determines the time multiplier setting to adjust the operating time of the IEEE IDMT curves.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>IN >2 tRESET</td>
<td>0.01 S</td>
<td>0 to 100s step 0.01s</td>
</tr>
</tbody>
</table>

This setting determines the reset/release time for definite time reset characteristic.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>IN >2 2H Blocking</td>
<td>Disabled</td>
<td>Enabled / Disabled</td>
</tr>
</tbody>
</table>

This setting determines the enabling/disabling of blocking second stage of Earth fault element due to presence of inrush current.

If IN>2 Blocking and 2nd Harmonic both setting are enabled, then (IN>2) trip command will be blocked in case 2nd harmonics content in any phase is above the 2ndHarm Thresh. and fundamental current is below I> lift 2H setting. (Set in SYSTEM CONFIG Menu.)
2.8.3.3 IN>3 Function

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IN>3 Function</td>
<td>IEC S Inverse</td>
<td>Disabled / DT / IEC S Inverse / S Inverse 1.3Sec / IEC V Inverse / IEC E Inverse / UK LT Inverse / IEEE M Inverse / IEEE V Inverse / IEEE E Inverse / US Inverse / US ST Inverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the tripping characteristic for the third stage earth fault current element.</td>
</tr>
</tbody>
</table>
| 2. | IN>3 Current Set | 1 * in | If DT 1.0 to 35.00 * in step 0.01 * in
| | | | If IDMT 0.10 to 2.50 * in step 0.01 * in |
| | | | This setting determines the pick-up setting for third stage earth fault current element. |
| 3. | IN>3 Time Delay | 1 S | 0 to 200s step 0.01s |
| | | | This setting determines the time-delay for the definite time setting, if selected for third stage earth fault element. |
| 4. | IN>3 TMS | 1 | 0.025 to 1.2 step 0.005 |
| | | | This setting determines the time multiplier setting to adjust the operating time of the IEC IDMT characteristic. |
| 5. | IN>3 Time Dial | 1 | 0.01 to 100 step 0.01 |
| | | | This setting determines the time multiplier setting to adjust the operating time of the IEEE IDMT curves. |
| 6. | IN>3 tRESET | 0.01 S | 0 to 100s step 0.01s |
| | | | This setting determines the reset/release time for all types of curves. |
| 7. | IN>3 2H Blocking | Disabled | Enabled / Disabled |
| | | | This setting determines the enabling/disabling of blocking third stage of Earth fault element due to presence of inrush current. |
| | | | If IN>3 Blocking and 2nd Harmonic both setting are enabled, then (IN>3) trip command will be blocked in case 2nd harmonics content in any phase is above the 2ndHarm Thresh. and fundamental current is below I> lift 2H setting . (Set in SYSTEM CONFIG Menu.) |

2.8.4 Thermal Overload

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Characteristic</td>
<td>Single</td>
<td>Disabled/ Single</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the operating characteristic of the thermal overload element.</td>
</tr>
<tr>
<td>2.</td>
<td>Thermal Trip</td>
<td>1 * in</td>
<td>0.10 to 4.00 * in step 0.01 In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting sets the pick-up threshold of the thermal characteristic. This would normally be the maximum full load current.</td>
</tr>
<tr>
<td>3.</td>
<td>Thermal Alarm</td>
<td>70</td>
<td>50 to 100% step 1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting sets the thermal state threshold at which an alarm will be generated. This corresponds to a percentage of the trip threshold.</td>
</tr>
<tr>
<td>4.</td>
<td>Time constant</td>
<td>10</td>
<td>1 to 200 min step 1min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the thermal time constant for a single time constant characteristic.</td>
</tr>
<tr>
<td>5.</td>
<td>K factor</td>
<td>1.05</td>
<td>1 to 1.5 step 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting specify the k constant of thermal over load function</td>
</tr>
</tbody>
</table>

2.8.5 Undercurrent

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I< Status</td>
<td>Enabled</td>
<td>Enabled / Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting is used to enable or disable the Undercurrent protection.</td>
</tr>
<tr>
<td>2.</td>
<td>I<</td>
<td>1 * in</td>
<td>0.1In to 1.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines pick-up setting for undercurrent element.</td>
</tr>
<tr>
<td>3.</td>
<td>tI<</td>
<td>1</td>
<td>0.20s to 100s step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the time-delay for tripping.</td>
</tr>
</tbody>
</table>
Cold Load Pickup

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>tcold Time Delay</td>
<td>7200</td>
<td>0 to 14400s step 1s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the time the load needs to be de-energized (dead time) before the new settings are applied.</td>
</tr>
<tr>
<td>2.</td>
<td>tclp Time Delay</td>
<td>7200</td>
<td>0 to 14400s step 1s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting controls the period of time for which the relevant overcurrent and earth fault settings are altered or inhibited following circuit breaker closure.</td>
</tr>
<tr>
<td>3.</td>
<td>I>1 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The I>1 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.</td>
</tr>
<tr>
<td>4.</td>
<td>I>1 Current Set</td>
<td>1.5*In</td>
<td>0.20 to 4.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new pick-up setting for first stage overcurrent element during the tclp time delay.</td>
</tr>
<tr>
<td>5.</td>
<td>I>1 Time Delay</td>
<td>0.01 S</td>
<td>0 to 100s step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new operating time delay for the first stage definite time overcurrent element during the tclp time.</td>
</tr>
<tr>
<td>6.</td>
<td>I>1 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 in step 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new time multiplier setting for the first stage element to adjust the operating time of the IEC IDMT characteristic during the tclp time.</td>
</tr>
<tr>
<td>7.</td>
<td>I>2 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The I>2 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.</td>
</tr>
<tr>
<td>8.</td>
<td>I>2 Current Set</td>
<td>1.5*In</td>
<td>0.20 to 4.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new pick-up setting for second stage overcurrent element during the tclp time delay.</td>
</tr>
<tr>
<td>9.</td>
<td>I>2 Time Delay</td>
<td>0.01 S</td>
<td>0 to 100s in step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new operating time delay for the second stage definite time overcurrent element during the tclp time.</td>
</tr>
<tr>
<td>10.</td>
<td>I>2 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 in step 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new time multiplier setting for the second stage element to adjust the operating time of the IEC IDMT characteristic during the tclp time.</td>
</tr>
<tr>
<td>11.</td>
<td>I>2 Time Dial</td>
<td>0.1</td>
<td>0.01 to 100 in step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new time multiplier setting for the second stage element to adjust the operating time of the IEEE / US IDMT characteristic during the tclp time.</td>
</tr>
<tr>
<td>12.</td>
<td>I>3 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The I>3 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.</td>
</tr>
<tr>
<td>13.</td>
<td>I>3 Current Set</td>
<td>1.5*In</td>
<td>0.20 to 4.00In step 0.01In</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new pick-up setting for third stage overcurrent element during the tclp time delay.</td>
</tr>
<tr>
<td>14.</td>
<td>I>3 Time Delay</td>
<td>0.01 S</td>
<td>0 to 100s step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new operating time delay for the third stage definite time overcurrent element during the tclp time.</td>
</tr>
<tr>
<td>15.</td>
<td>I>3 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 in step 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new time multiplier setting for the third stage element to adjust the operating time of the IEC IDMT characteristic during the tclp time.</td>
</tr>
<tr>
<td>16.</td>
<td>I>3 Time Dial</td>
<td>0.1</td>
<td>0.01 to 100 in step 0.01s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This setting determines the new time multiplier setting for the third stage element to adjust the operating time of the IEEE / US IDMT characteristic during the tclp time.</td>
</tr>
</tbody>
</table>
Protection Parameter Settings

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Parameter</th>
<th>Default setting</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>IN>1 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td>IN>1 Current Set</td>
<td>0.2*ln</td>
<td>0.20 to 4.00 step 0.01*ln</td>
</tr>
<tr>
<td></td>
<td>IN>1 Time Delay</td>
<td>0.01 S</td>
<td>0 to 200s step 0.01s</td>
</tr>
<tr>
<td></td>
<td>IN>1 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
<tr>
<td></td>
<td>IN>1 Time Dial</td>
<td>0.1</td>
<td>0.01 to 100 in step 0.01s</td>
</tr>
<tr>
<td>23.</td>
<td>IN>2 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td>IN>2 Current Set</td>
<td>0.2*ln</td>
<td>0.20 to 4.00ln step 0.01ln</td>
</tr>
<tr>
<td></td>
<td>IN>2 Time Delay</td>
<td>0.01 S</td>
<td>0 to 200s step 0.01s</td>
</tr>
<tr>
<td></td>
<td>IN>2 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
<tr>
<td></td>
<td>IN>2 Time Dial</td>
<td>0.1</td>
<td>0.01 to 100 in step 0.01s</td>
</tr>
<tr>
<td>28.</td>
<td>IN>3 Status</td>
<td>Enabled</td>
<td>Blocked / Enabled</td>
</tr>
<tr>
<td></td>
<td>IN>3 Current Set</td>
<td>0.2*ln</td>
<td>0.20 to 4.00ln step 0.01ln</td>
</tr>
<tr>
<td></td>
<td>IN>3 Time Delay</td>
<td>0.01 S</td>
<td>0 to 200s step 0.01s</td>
</tr>
<tr>
<td></td>
<td>IN>3 TMS</td>
<td>0.1</td>
<td>0.025 to 1.2 step 0.005</td>
</tr>
<tr>
<td></td>
<td>IN>3 Time Dial</td>
<td>0.1</td>
<td>0.01 to 100 in step 0.01s</td>
</tr>
</tbody>
</table>

The IN>1 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.

This setting determines the new pick-up setting for first stage earth fault element during the tclp time delay.

This setting determines the new operating time delay for the first stage definite time element during the tclp time.

This setting determines the new time multiplier setting to adjust the operating time of the IEC IDMT characteristic during the tclp time.

This setting determines the new time multiplier setting for the first stage element to adjust the operating time of the IEEE / US IDMT characteristic during the tclp time.

The IN>2 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.

This setting determines the new pick-up setting for second stage earth fault element during the tclp time delay.

This setting determines the new operating time delay for the second stage definite time element during the tclp time.

This setting determines the new time multiplier setting to adjust the operating time of the IEC IDMT characteristic during the tclp time.

This setting determines the new time multiplier setting for the second stage element to adjust the operating time of the IEEE / US IDMT characteristic during the tclp time.

The IN>3 status cells have two setting options, "Enabled" and "Blocked". Selecting "Enabled" for a particular stage means that the current and time settings programmed in the following cells will be adopted during the "tclp" time. Selecting "Blocked" simply blocks the relevant protection stage during the "tclp" time. It also removes the following current and time settings for that stage from the menu.

This setting determines the new pick-up setting for third stage earth fault element during the tclp time delay.

This setting determines the new operating time delay for the third stage definite time element during the tclp time.

This setting determines the new time multiplier setting to adjust the operating time of the IEC IDMT characteristic during the tclp time.

This setting determines the new time multiplier setting for the third stage element to adjust the operating time of the IEEE / US IDMT characteristic during the tclp time.
CHAPTER OVERVIEW

This chapter consists of the following sections:

<table>
<thead>
<tr>
<th>1</th>
<th>Chapter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Monitoring & Control</td>
</tr>
<tr>
<td>2.1</td>
<td>Monitoring Functions (Event, Fault, Disturbance Record)</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Event Records</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Fault Record</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Disturbance Record</td>
</tr>
<tr>
<td>2.2</td>
<td>Display of Measuring Parameters</td>
</tr>
<tr>
<td>2.3</td>
<td>Self-Diagnostic features</td>
</tr>
<tr>
<td>2.4</td>
<td>Interface with SCADA</td>
</tr>
<tr>
<td>2.5</td>
<td>Binary output relay</td>
</tr>
<tr>
<td>2.6</td>
<td>Remote trip</td>
</tr>
</tbody>
</table>
2 MONITORING & CONTROL

2.1 Monitoring Functions (Event, Fault, Disturbance Record)

The IED logs three different types of record. These are Event, Fault and Disturbance records, which are stored in the IEDs non-volatile memory. It is important to log records because this allows you to establish the sequence of events that occurred, for example following a particular power system condition.

The device is capable of storing up to:

- 100 event records
- 5 Fault records
- 5 Disturbance records

When the available space is exhausted, the oldest record is automatically overwritten by the new one. The IEDs internal clock provides a time tag for each event, to a resolution of 1 ms.

The VIEW RECORDS column contains details of these Event and Fault records, which can be displayed on the IEDs front panel, although it is easier to view them using the settings application software.

The device supports IEC 60870-5-103 and Modbus protocol. It auto-detects IEC-60870-5-103 and MODBUS command and responds in respective language. There is no any specific setting which defines the protocol.

Note: The MODBUS by design does not support event functionality.

2.1.1 Event Records

Event records are generated when certain events happen. A change in any digital input signal or protection element output signal causes an event record to be created. These events are generated by the protection software and immediately time stamped. They are then transferred to non-volatile memory for storage.

The device continuously monitors logical and physical status. There are three physical Binary inputs provided, marked as S1, S2 and S3. The S1 is designed to monitor breaker status and also use this status for Cold load operation, while S2 and S3 are general purpose. Any physical or logical change is recorded as event. These events are stored in internal, non-volatile memory along with a time stamp. Some of the events recorded include: Protection pickup, Relay Reset and CB Trip. A complete list can be found in protocol document. Up to 100 such events can be stored and downloaded for detailed analysis. Details of event data are as follows:

Capacity: 100 events
Time-tag: 1 millisecond
Triggers: Any selected protection alarm and threshold, Logic input change of state, Self-test events and setting changes.

The user can view the event records either using the front panel interface, the USB port or remotely using the rear EIA(RS)485 port.
2.1.2 Fault Record

A fault record is triggered by any protection signal which trips the circuit breaker. If there are any fault records, these will appear automatically in the VIEW RECORDS column. You can select the fault record in the VIEW RECORDS column. A value of '01' corresponds to the latest fault record.

Information about the fault follows in the subsequent cells. The time stamp assigned to the fault record itself is more accurate than the corresponding stamp of the event record, because the event is logged after the actual fault record is generated. The fault measurements in the fault record are given at the time of the protection Start.

After every fault relay latched fault data which can be viewed for detailed analysis. The following are details of this fault data.

- **Capacity:** 5 faults
- **Time-tag:** 1 millisecond
- **Triggers:** Any selected protection threshold.
- **Data:** Fault number, Type of fault (stage / Phase / EF etc), Trip counter, Fault current magnitude in Secondary, Trip Timing, Thermal state, Fault date and Fault time.

2.1.3 Disturbance Record

The disturbance recorder can record the waveforms of the calibrated analogue channels, as well as the values of the digital signals. The disturbance recorder is supplied with data once per cycle, and collates the received data into a disturbance record. The disturbance records can be extracted using application software or the SCADA system, which can also store the data in COMTRADE format, allowing the use of other packages to view the recorded data.

The integral disturbance recorder has an area of memory specifically set aside for storing disturbance records. The number of records that can be stored is dependent on the recording duration. Up to 5 such waveforms can be recorded; the duration of each disturbance record is 1sec. The maximum total recording time is 5 seconds.

When the available memory is exhausted, the oldest records are overwritten by the newest ones. The disturbance recorder stores the samples that are taken at a rate of 12 samples per cycle.

Each disturbance record consists of 4 analogue data channels and 16 digital data channels. The relevant CT ratio for the analogue channels is also extracted to enable scaling to primary quantities.

The relay records the waveform of the current along with all digital and logical status during a fault. The disturbance record can be triggered from trip operation of relay. This waveform can be downloaded via the communication port for further analysis.

The details of the disturbance record are as follows:

- **Capacity:** 5 records of 1 sec each (0.9 sec for pre fault and 0.1 sec for post fault)
- **Sampling Rate:** 12 samples / cycles
- **Triggers:** Trip signal
- **Data:** 4 analogue channels and 16 digital channels (physical and logical status).

2.2 Display of Measuring Parameters

The device directly measures and calculates a number of system quantities, which are updated at regular intervals. These values can be viewed in the MEASUREMENTS menu on the LCD screen using the navigation keys on the front panel or using the P50 Agile configurator tool.

In normal conditions the relay displays Primary and Secondary current value of phases A, B, C and earth current N as per phase/earth CT ratio within ±1% 1% accuracy and Thermal state in %.
The device measures and displays the following quantities:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Amp</td>
<td>Primary current in phase A</td>
</tr>
<tr>
<td>B</td>
<td>Amp</td>
<td>Primary current in phase B</td>
</tr>
<tr>
<td>C</td>
<td>Amp</td>
<td>Primary current in phase C</td>
</tr>
<tr>
<td>N</td>
<td>Amp</td>
<td>Primary current in phase N</td>
</tr>
<tr>
<td>a</td>
<td>Amp</td>
<td>Secondary current in phase A</td>
</tr>
<tr>
<td>b</td>
<td>Amp</td>
<td>Secondary current in phase B</td>
</tr>
<tr>
<td>c</td>
<td>Amp</td>
<td>Secondary current in phase C</td>
</tr>
<tr>
<td>n</td>
<td>Amp</td>
<td>Secondary current in phase N</td>
</tr>
<tr>
<td>Thermal State</td>
<td>%</td>
<td>Thermal state</td>
</tr>
</tbody>
</table>

In the event of a fault, the type of the fault and fault current are displayed on LCD. The IED measures the fault current and stores it in the non-volatile memory.

2.3 Self-Diagnostic features

The P15D relay includes self-monitoring function to check the operation of its hardware and software while in service. If there is a problem with the hardware or software, it is able to detect and report the problem.

The relay continuously monitors the hardware and in the event detects any hardware fault/error, corresponding error code is displayed on the LCD. These faults errors are stored in the error log file and can be viewed from “Error Log” menu. Error log is stored as 16 bit integer. Some example of error codes are given below:

- Setting error: 0000 0000 0000 0001
- RTC error: 0000 0000 0000 0100

If more than one error bits are set: the error code displayed on the LCD is the combination of these error bits.

As an example if RTC error and Setting error occur simultaneously, then error code/error log will be as under:

<table>
<thead>
<tr>
<th>Setting Error Bit</th>
<th>RTC Error Bit</th>
<th>Error code</th>
<th>Error log on LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0001</td>
<td>0000 0000 0000 0100</td>
<td>0000 0000 0000 0101</td>
<td>0005</td>
</tr>
</tbody>
</table>

If the error is cleared during the self-diagnostic procedure the corresponding error bit will be cleared. In case of errors related to ‘Setting’ and ‘ADC’, P15D goes in to OUT OF SERVICE mode (Protection function will be blocked) and the ON LED on the front facia of the relay will start blinking at 1 sec interval. For more details, refer to the Troubleshooting section.

2.4 Interface with SCADA

Communication port RS-485 can be configured for networking with remote SCADA. The additional binary inputs S2 & S3 are provided and can be used to monitor any additional contact, such as CB or any other relay contact, remotely.

2.5 Binary output relay

The relay supports two output contacts: 1x self-reset and 1x latching type. The self-reset trip contact remains closed until the fault persists and opens after fault current become less than reset value. The
latching type contact will close when a fault occurs and the relay provides trip command. This contact will remain closed even if there is no power supplied to relay. The contact can be reset by pressing RESET key after normalization of the relay power supply.

2.6 Remote trip
A dedicated binary input is provided marked as remote trip. After applying auxiliary voltage to this terminal, the relay will provide an instant trip. This can be used for initiating trip from remote signal as well for safety functions such as transformer door monitoring.
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1. Chapter overview
2. Front panel external battery backup
A non-chargeable external battery backup is provided to view parameters whenever there is loss of source power supply. Press the “BAT ON” key to view the relay parameters on the LCD.

The battery is located in the battery box on the front panel and can be easily replaced by opening the cover. The unit uses three AA size batteries with capacity of 1.5 V each.

Caution Risk of fire if batteries are replaced with incorrect type or polarity.
IMPULSE OUTPUT FOR TRIPPING COIL

CHAPTER 10
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview
2 Impulse Output for Tripping Coil
2 IMPULSE OUTPUT FOR TRIPPING COIL

The Low Energy tripping coil of the circuit breaker (CB) can be interfaced on relay terminal block. The trip energy (12 V-24 V DC <= 0.1 J) is provided by a capacitor in the relay. The capacitors are charged by a current input or the auxiliary voltage. The length of the trip impulse is 50 ms (if the output is not burdened). The pause between the individual pulses depends on the impedance of the tripping coil and the current level. The pulse lasts as long as the activation threshold is exceeded. The voltage level of the energy output depends on the discharging time.

![Diagram of impulse output connection to Trip coil of CB](image)

Figure 1: Impulse output connection to Trip coil of CB
IMPULSE FOR FLAG INDICATOR

CHAPTER 11
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview
2 Impulse for Flag Indicator
2 IMPULSE FOR FLAG INDICATOR

The trip energy (12 V-24 V DC, <= 0.03 J) for the flag indicator is stored by a capacitor built into the protection relay. The capacitors are charged by a current input or the auxiliary voltage. The duration of the trip pulse is 50 ms (if output is not burden). The pause between the individual pulses depends on the impedance of the flag indicator and on the current level. The pulse lasts as long as the activation threshold is exceeded. The impulse output for flag indicator and trip coil drive energy from same source. The flag indicator output uses additional capacitor to store additional required energy. If more energy is taken from flag output than specified, then it will affect energy output of trip coil.
SCADA COMMUNICATIONS

CHAPTER 12
CHAPTER OVERVIEW

This chapter consists of the following sections:

<table>
<thead>
<tr>
<th></th>
<th>Chapter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCADA communications</td>
</tr>
<tr>
<td>2.1</td>
<td>Modbus</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Overview</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Protocol Mapping</td>
</tr>
<tr>
<td>2.2</td>
<td>IEC60-870-5-103</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Overview</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Physical Connection and Link Layer</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Initialisation</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Time Synchronisation</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Spontaneous Events</td>
</tr>
<tr>
<td>2.2.6</td>
<td>General Interrogation (GI)</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Cyclic Measurements</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Commands</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Test Mode</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Disturbance Records</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Configuration</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Protocol Mapping</td>
</tr>
</tbody>
</table>
2 SCADA COMMUNICATIONS

2.1 Modbus

This section describes how the MODBUS standard is applied to the Px50 platform. It is not a description of the standard itself. The level at which this section is written assumes that the reader is already familiar with the MODBUS standard.

The MODBUS protocol is a master/slave protocol, defined and administered by the MODBUS Organization. For further information on MODBUS and the protocol specifications please see the Modbus web site (www.modbus.org).

2.1.1 Overview

Physical Connection and Link Layer

Only one option is available for connecting MODBUS.

- Rear serial port 1 - for permanent SCADA connection via EIA(RS)485

The MODBUS interface uses ‘RTU’ mode communication rather than ‘ASCII’ mode as this provides more efficient use of the communication bandwidth. This mode of communication is defined by the MODBUS standard.

The IED address and baud rate can be selected using the front panel menu or with P50 Agile configurator.

When using a serial interface, the data format is: 1 starts bit, 8 data bits, 1 parity bit with 1 stop bit, or 2 stop bits (a total of 11 bits per character). One stop bit when parity even or odd, 2 stop bits when parity none.

MODBUS Functions

2.1.2 Protocol Mapping

The following MODBUS function codes are supported:

<table>
<thead>
<tr>
<th>Code</th>
<th>Function Name</th>
<th>Addresses starts with</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>Read Input Status</td>
<td>1x addresses</td>
</tr>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
<td>4x addresses</td>
</tr>
<tr>
<td>04</td>
<td>Read Input Registers</td>
<td>3x addresses</td>
</tr>
<tr>
<td>05</td>
<td>Force Single Coil</td>
<td>0x addresses</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
<td>4x addresses</td>
</tr>
</tbody>
</table>

- Exception Codes generated in case of an error:

<table>
<thead>
<tr>
<th>Code</th>
<th>MODBUS Response Name</th>
<th>Product interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function Code</td>
<td>The function code received in query is not supported by the IED.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The start address received in the query is not an allowable value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: If the start address received is correct but the range includes unsupported address, then this error is produced.</td>
</tr>
</tbody>
</table>

Note: The addresses of the MODBUS registers start from 1 and the user may have to subtract 1 from the addresses, depending on the configuration of the Master station configuration.
### Sr. No.	Function Code	Register	No. of Regs	Format	Reg. Type	Address Map
1	Product Information	03				
Manufacturer Name	10	20-Bytes ASCII	R	4x00001 – 4x00010		
Relay Name	10	20-Bytes ASCII	R	4x00011 – 4x00020		

### Sr. No.	Function Code	Register	No. of Regs	Format	Reg. Type	Address Map
2	Time Synchronization (Unicast/Broadcast)	03/16				
Year	1	16 bit	R/W	4x02049		
Month-Day	1	16 bit	R/W	4x02050		
Hour, Min	1	16 bit	R/W	4x02051		
Milliseconds	1	16 bit	R/W	4x02052		

For P50 Agile IEDs on Modbus, time synchronization is possible via a broadcast command to 800H (4x02049 through 4x02052). The format is inverted IEC 870-5-4 CP56Time2a

Words	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	SU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Milliseconds Hi	Milliseconds Lo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Su (=0 Standard, =1 Summer Time)
iv (=0 valid, =1 non valid or non synchronised system case)

First day of week is Monday
<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Function Code</th>
<th>Register</th>
<th>No. of Regs</th>
<th>Format</th>
<th>Reg. Type</th>
<th>Address Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Status and Logical Status</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Strt</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32769</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt R</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt Y</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt B</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32772</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt >1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32773</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt >2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32774</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt >3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt IN>1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt IN>2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32777</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt IN>3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLP in Progress</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32779</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strt <</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32780</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TH Alarm</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gen Trip</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32782</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip L1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32783</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip L2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32784</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip L3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32785</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip >1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip >2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32787</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip >3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip IN>1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32789</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip IN>2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32790</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip IN>3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32791</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip CLP</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tri< Trip</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32793</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Trip</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32794</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status-1</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status-2</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status-3</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32803</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status-4</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip LED</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latch Trip</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32806</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection active</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32807</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relay Error</td>
<td>1</td>
<td>1 bit</td>
<td>R</td>
<td>1x32808</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Function Code</th>
<th>Register</th>
<th>No. of Regs</th>
<th>Format</th>
<th>Reg. Type</th>
<th>Address Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Outputs</td>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip</td>
<td>1</td>
<td>16 bit</td>
<td>W</td>
<td>0x33025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED Reset</td>
<td>1</td>
<td>16 bit</td>
<td>W</td>
<td>0x33026</td>
<td></td>
</tr>
</tbody>
</table>
2.2 IEC60-870-5-103

2.2.1 Overview

The specification IEC 60870-5-103 (Telecontrol Equipment and Systems Part 5 Section 103: Transmission Protocols), defines the use of standards IEC 60870-5-1 to IEC 60870-5-5, which were designed for communication with protection equipment.

This section describes how the IEC 60870-5-103 standard is applied to the P15D Relay. It is not a description of the standard itself. The level at which this section is written assumes that the reader is already familiar with the IEC 60870-5-103 standard.

This section should provide sufficient detail to enable understanding of the standard at a level required by most users.

The IEC 60870-5-103 interface is a master/slave interface with the device as the slave device. The device conforms to compatibility level 2, as defined in the IEC 60870-5-103 standard.

The following IEC 60870-5-103 facilities are supported by this interface:

- Initialization (reset)
- Time synchronisation
- Event record extraction
- General interrogation
- Cyclic measurements
- General commands
- Disturbance record extraction

2.2.2 Physical Connection and Link Layer

There is just one option for IEC 60870-5-103:

- Rear serial port 1- for permanent SCADA connection via RS485

The IED address and baud rate can be selected using the front panel menu or with P50 Agile configurator.

2.2.3 Initialisation

Whenever the device has been powered up, or if the communication parameters have been changed, a reset command is required to initialize the communications. The device will respond to either of the two reset commands; Reset CU or Reset FCB (Communication Unit or Frame Count Bit). The difference between the two commands is that the Reset CU command will clear any unsent messages in the transmit buffer, whereas the Reset FCB command does not delete any messages.
The device will respond to the reset command with an identification message ASDU 5. The Cause of Transmission (COT) of this response will be either Reset CU or Reset FCB depending on the nature of the reset command.

The relay will also produce a power up event, when the relay is powered up.

2.2.4 Time Synchronisation

The time and date can be set using the time synchronisation feature of the IEC 60870-5-103 protocol. The device will correct the transmission delay depending on communication speed. For this, transmission time, required for the time synchronization frame from the Master to IED, considering current baud rate, is added in the received time If the time synchronisation message is sent as a send/confirm message then the device will respond with a confirm message. A time synchronisation Class 1 event will be generated/produced whether the time-synchronisation message is sent as a send confirm or a broadcast (send/no reply) message.

2.2.5 Spontaneous Events

Events are categorized using the following information:

- Function type
- Information Number

The IEC 60870-5-103 profile in the Menu Database contains a complete listing of all events produced by the device.

2.2.6 General Interrogation (GI)

The GI request can be used to read the status of the device, the function numbers, and information numbers that will be returned during the GI cycle. These are shown in the IEC 60870-5-103 profile in the Menu Database.

2.2.7 Cyclic Measurements

The device will produce measured values using ASDU 3 or ASDU 9. ASDU3 will be reported with information number 147 and ASDU9 is reported with information number 148 and 155. These three frames are reported alternately. This can be read from the device using a Class 2 poll. For every query the current online data is reported.

The device transmits its measurands at 2.4 times the rated value of the analogue value.

2.2.8 Commands

The list of commands supported P15D relay is given in table below.

2.2.9 Test Mode

It is possible to enable test mode in the relay using either the front panel menu or with P50 Agile configurator. An event will be produced to indicate both entry to and exit from test mode. Spontaneous events and cyclic measured data transmitted whilst the device is in test mode will have a COT of ‘test mode’

2.2.10 Disturbance Records

The disturbance records are stored in uncompressed format and can be extracted using the standard mechanisms described in IEC 60870-5-103. This relay supports up-to 5 records.
2.2.11 Configuration

To configure the IED for this protocol, please see the Configuration chapter.

2.2.12 Protocol Mapping

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Semantics of INFORMATION NUMBER : System Functions in monitor direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>End of general interrogation</td>
<td>8</td>
<td></td>
<td>10</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Time synchronization</td>
<td>6</td>
<td></td>
<td>8</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Reset FCB</td>
<td>5</td>
<td></td>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Reset CU</td>
<td>5</td>
<td></td>
<td>4</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Start/Restart</td>
<td>5</td>
<td></td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Power on</td>
<td>5</td>
<td></td>
<td>6</td>
<td>160</td>
</tr>
</tbody>
</table>

Note: X under GI heading means DI Status is included in General Interrogation response.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Semantics of INFORMATION NUMBER : Status Indications in monitor direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Protection active</td>
<td>X</td>
<td>1</td>
<td>1,7,9</td>
<td>160</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Trip LED</td>
<td>X</td>
<td>1</td>
<td>1,7,9,11,12,20,21</td>
<td>160</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Test Trip</td>
<td>X</td>
<td>1</td>
<td>9,11</td>
<td>127</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Local parameter setting</td>
<td>X</td>
<td>1</td>
<td>9,11,12</td>
<td>160</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>Opto I/P-1</td>
<td>X</td>
<td>1</td>
<td>1,7,9,11</td>
<td>160</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>Opto I/P-2</td>
<td>X</td>
<td>1</td>
<td>1,7,9,11</td>
<td>160</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>Opto I/P-3</td>
<td>X</td>
<td>1</td>
<td>1,7,9,11</td>
<td>160</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>Opto I/P-4</td>
<td>X</td>
<td>1</td>
<td>1,7,9,11</td>
<td>160</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>INF</td>
<td>Description</td>
<td>GI</td>
<td>TYP</td>
<td>COT</td>
<td>FUN</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Semantics of INFORMATION NUMBER: Fault indications in monitor direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>3</td>
<td>Gen Strt</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>160</td>
</tr>
<tr>
<td>64</td>
<td>3</td>
<td>Strt L1</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>160</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>Strt L2</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>160</td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>Strt L3</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>160</td>
</tr>
<tr>
<td>117</td>
<td>3</td>
<td>Strt l>1</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>103</td>
<td>3</td>
<td>Strt l>2</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>105</td>
<td>3</td>
<td>Strt l>3</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>143</td>
<td>3</td>
<td>Strt I>1</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>144</td>
<td>3</td>
<td>Strt I>2</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>145</td>
<td>3</td>
<td>Strt I>3</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>THOL Alm</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>Strt CLP</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>124</td>
</tr>
<tr>
<td>178</td>
<td>3</td>
<td>Strt l<</td>
<td>X</td>
<td>2</td>
<td>1,7,9</td>
<td>126</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>Test Mode</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>124</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
<td>Gen Trip</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>69</td>
<td>3</td>
<td>Trip L1</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>70</td>
<td>3</td>
<td>Trip L2</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>71</td>
<td>3</td>
<td>Trip L3</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>Trip l>1</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>91</td>
<td>3</td>
<td>Trip l>2</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>160</td>
</tr>
<tr>
<td>104</td>
<td>3</td>
<td>Trip l>3</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>123</td>
<td>3</td>
<td>Trip I>1</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>124</td>
<td>3</td>
<td>Trip I>2</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>125</td>
<td>3</td>
<td>Trip I>3</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>202</td>
<td>3</td>
<td>THOL Trip</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>225</td>
<td>3</td>
<td>CLP</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>177</td>
<td>3</td>
<td>Trip l<</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>126</td>
</tr>
<tr>
<td>145</td>
<td>3</td>
<td>Rly Error</td>
<td>-</td>
<td>2</td>
<td>1,7</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>Semantics of INFORMATION NUMBER: Measurands in monitor direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>5</td>
<td>Measurand In</td>
<td>-</td>
<td>3</td>
<td>2,7</td>
<td>160</td>
</tr>
<tr>
<td>148</td>
<td>5</td>
<td>Measurand I.1.2.3</td>
<td>-</td>
<td>9</td>
<td>2,7</td>
<td>160</td>
</tr>
<tr>
<td>155</td>
<td>5</td>
<td>Th State</td>
<td>-</td>
<td>9</td>
<td>2,7</td>
<td>160</td>
</tr>
</tbody>
</table>

Note: The measurands transmitted by the relay are sent as a proportion of 2.4 times of the rated value of the analogue value.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>Semantics of INFORMATION NUMBER: Fault list in monitor direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>List of Recorded DR</td>
<td>-</td>
<td>23</td>
<td>31</td>
<td>160</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>INF</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Semantics of Actual Channel : Used for DR Transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>Semantics of INFORMATION NUMBER : System Functions in control direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Initialization of general interrogation</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Time synchronization</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>INF</th>
<th>Description</th>
<th>GI</th>
<th>TYP</th>
<th>COT</th>
<th>FUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>Semantics of INFORMATION NUMBER : General commands in control direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>LED Reset</td>
<td>ON</td>
<td>20</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>Trip</td>
<td>ON/OFF</td>
<td>20</td>
<td>20</td>
<td>127</td>
</tr>
</tbody>
</table>
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview

2 Installation
 2.1 Handling the goods
 2.1.1 Cables and Connectors
 2.1.2 Case dimensions
 2.2 Commissioning
 2.2.1 Commissioning Test and equipment required
 2.2.2 External circuitry check
 2.2.2.1 Earthing
 2.2.2.2 CT Polarity
 2.2.3 Check relay settings
 2.2.4 Final check
 2.2.5 Relay testing
 2.2.5.1 Relay calibration
 2.2.5.2 Pickup, Trip and Binary Output Test:
 2.2.6 Testing of Binary Input Contact:
 2.2.7 Testing for optional auxiliary power supply
 2.2.8 Testing for trip coil
 2.2.9 Testing for flag coil
 2.2.10 Functional test
 2.2.10.1 Testing of Overcurrent Protection
 2.2.10.2 Testing of Earth Fault Protection
 2.3 Maintenance
 2.4 Troubleshooting
2 INSTALLATION

2.1 Handling the goods

Our products are of robust construction but require careful treatment before installation on site. This section discusses the requirements for receiving and unpacking the goods, as well as associated considerations regarding product care and personal safety.

Caution: Before lifting or moving the equipment you should be familiar with the Safety Information chapter of this manual.

Receipt of the goods

On receipt, ensure the correct product has been delivered. Unpack the product immediately to ensure there has been no external damage in transit. If the product has been damaged, make a claim to the transport contractor and notify us promptly.

For products not intended for immediate installation, repack them in their original delivery packaging.

Unpacking the goods

When unpacking and installing the product, take care not to damage any of the parts and make sure that additional components are not accidentally left in the packing or lost. Do not discard any CDROMs or technical documentation. These should accompany the unit to its destination substation and put in a dedicated place.

The site should be well lit to aid inspection, clean, dry and reasonably free from dust and excessive vibration. This particularly applies where installation is being carried out at the same time as construction work.

Storing the goods

If the unit is not installed immediately, store it in a place free from dust and moisture in its original packaging. Keep any de-humidifier bags included in the packing. The de-humidifier crystals lose their efficiency if the bag is exposed to ambient conditions. Restore the crystals before replacing it in the carton. Bags should be placed on flat racks and spaced to allow circulation around them. The time taken for regeneration will depend on the size of the bag. If a ventilating, circulating oven is not available, when using an ordinary oven, open the door on a regular basis to let out the steam given off by the regenerating silica gel. On subsequent unpacking, make sure that any dust on the carton does not fall inside. Avoid storing in locations of high humidity. In locations of high humidity the packaging may become impregnated with moisture and the de-humidifier crystals will lose their efficiency.

The device can be stored between –25º to +65ºC.

Dismantling the goods

If you need to dismantle the device, always observe standard ESD (Electrostatic Discharge) precautions.

The minimum precautions to be followed are as follows:

- Use an antistatic wrist band earthed to a suitable earthing point.
- Avoid touching the electronic components and PCBs.

Mounting the device

The products are available for flush panel mounting only.
Flush Panel Mounting

P15D supports flush panel mounting and can be mounted into panels using fitting clamps with M5 X 10 screws.

The fitting clamp and screws are supplied along with the relay.

For mounting the relay in to the panel follow this procedure

1. By loosening the M5 x 10 screws, remove the fitting clamps on the relay and then insert the Relay in to the panel cutout as show below.

![Figure 1: Inserting relay in to the panel cutout](image1)

2. After inserting the Relay in the Panel using the Fitting clamps and the M5 x 10 Screws fasten the relay to the Panel as shown below.

![Figure 2: Tightening Fitting clamps](image2)
Caution: All screws of fitting clamps to be properly tightened. Always use M5x10 screws for fitting the clamps.

3. The Relay after fastening to the Panel with the help of Fitting clamps and the M5 x 10 Screws is shown below.

![Figure 3: Relay mounted on the panel-front view](image)

![Figure 4: Relay mounted on the panel-rear view](image)

Relay Connection

Before installation of the relay check the correct working procedure as to ensure safety. The Terminal exposed during installation may present a hazardous voltage unless the equipment is electrically isolated. Any disassembly of the equipment may expose parts to hazardous voltage. Electronic parts may be damaged if suitable electrostatic discharge (ESD) precautions are not taken. Voltage and current connection should be made using insulated crimp termination to ensure that terminal block insulation requirements are maintained for safety. To ensure that wires are correctly terminated the correct crimp terminal and tool for wire size should be used. The equipment must be connected in accordance with the appropriate connection diagram.
Before Energizing following should be checked
1. Voltage rating and polarity.
2. CT circuit rating and integrity of connection.
3. Protective fuse rating.
4. Integrity of the earthing connection.
5. Voltage and current rating of external wiring, applicable as per application.

Relay Operating Condition

The equipment should be operated within the specified electrical and environmental limits.

Current Transformer (CT) Circuit

Do not open the secondary circuit of a live CT as the high voltage produce may be lethal to personnel and could damage insulation. Generally, for safety, the secondary of the line CT must be shorted before opening any connection to it.

Insulation and dielectric strength testing

Insulation testing may leave capacitors charged up to a hazardous voltage. At the end of each part test, the voltage should be gradually reduced to zero, to discharge capacitors, as this may result in damage.

2.1.1 Cables and Connectors

This section describes the type of wiring and connections that should be used when installing the device. For pin-out details please refer to the wiring diagrams.

Caution: Before carrying out any work on the equipment you should be familiar with the Safety Section and the ratings on the equipment's rating label.

Figure 5: P15D Rear view-Terminal Connection
Terminal Blocks

CT/Auxiliary power/Input/Output connections

The P50 Agile devices use terminal blocks as shown below. The terminal block consists of up to 9 x M5 screw terminals and 20 x M4 screw terminals. M5 terminal blocks are used for CT connections and M4 terminal blocks are used for auxiliary power/input/output connections. The wires should be terminated with rings using 90° ring terminals, with no more than two rings per terminal. The product is supplied with sufficient M5 & M4 screws for proper connection.

![M4 Terminal block](image.png) ![M5 Terminal block](image.png)

Figure 6: Terminal blocks

⚠️ **Caution:** Always fit an insulating sleeve over the ring terminal.

Rear Serial Port connection

The rear serial port is intended for use with a permanently wired connection to a remote SCADA system. The physical connectivity is achieved using three screw terminals: C3, C4 terminals for signal connection, and C5 terminal for connecting cable shield. The terminal block is located at the rear of the relay as shown below.

![Figure 7: Rear Serial port terminal block](image.png)

Power Supply Connections

These should be wired with 1.5 mm PVC insulated multi-stranded copper wire terminated with M4 ring terminals. The wire should have a minimum voltage rating of 300 V RMS.

As per the application, in case auxiliary supply input of the relay needs to be wired, then adequate care should be taken to wire as per polarity marking on the Terminal sticker at the rear of the relay. The supply range is also mentioned on the Terminal sticker and before energising, care should be taken to confirm that the auxiliary supply being wired is within range.

Earth Connection

Every device must be connected to the cubicle earthing bar. Earthing terminal is provided on back side of the relay. Ensure that the relay earthing is connected to the local earth bar. With several relays present; make sure that the copper earth bar is properly installed for solidity connecting to the earthing terminal of each relay equipment box.
Before energizing the equipment it must be earthed using the protective conductor terminal, (if provided) or the appropriate termination of the supply plug in the case of plug connected equipment. The protective conductor (earth) connection must not be removed since the protection against electric shock provided by the equipment would be lost. The recommended minimum protective conductor (earth) wire size is 2.5 mm² or as per industries standard practice. The protective conductor (earth) connection must be of low-inductance and as short as possible.

![Image of earthing terminal on the rear side of the relay](image)

Figure 8: Earthing terminal on the rear side of the relay

Note: To prevent any possibility of electrolytic action between brass or copper ground conductors and the rear panel of the product, precautions should be taken to isolate them from one another. This could be achieved in several ways, including placing a nickel-plated or insulating washer between the conductor and the product case, or using tinned ring terminals.

Current Transformers

Current transformers would generally be wired with 2.5 mm² PVC insulated multi-stranded copper wire terminated with M5 ring terminals. The wires should be terminated with rings using 90° rings terminals, with no more than two rings per terminal.

Due to the physical limitations of the ring terminal, the maximum wire size you can use is 4.0 mm² using ring terminals.

The wire should have a minimum voltage rating of 300 V RMS.

Caution: Current transformer circuits must never be fused.

Note 1: Terminal blocks must not be detached whilst any current transformer (CT) circuit is live. CT shorting must be achieved by external means; the product does not include this facility.

Note 2: For 5A CT secondary, we recommend using 2 x 2.5 mm² PVC insulated multi-stranded copper wire.

EIA(RS)485 Connections

For connecting the EIA (RS485), use 2-core screened cable with a maximum total length of 1000 m or 200 nF total cable capacitance.
A typical cable specification would be:

- Each core: 16/0.2 mm² copper conductors, PVC insulated
- Nominal conductor area: 0.5 mm² per core
- Screen: Overall braid, PVC sheathed

There is no electrical connection of the cable screen to the device. The link is provided purely to link together the two cable screens.

Output Relay Connections

These should be wired with 1 mm PVC insulated multi-stranded copper wire terminated with M4 ring terminals.

USB Connection

The IED has a type B USB socket on the front panel. A standard USB printer cable (type A one end, type B the other end) can be used to connect a local PC to the IED. This cable is the same as that used for connecting a printer to a PC.
2.1.2 Case dimensions

Figure 9: Case dimensions

Note: All dimensions in mm.
2.2 Commissioning

2.2.1 Commissioning Test and equipment required

The P15D is fully numerical in its design - it has self-supervision function which continuously keeps track of its internal hardware, and it will display a message on the LCD screen if it detects the failure of any component. This is why the commissioning tests are less extensive than those for non-numeric electronic devices or electromechanical relays.

At the time of commissioning the P15D, the following test equipment is required as a minimum:

- Current injection test kit
- Multimeter with suitable AC current range and DC voltage range.
- Timer with precision 1 ms.
- Required auxiliary supply.
- Connecting wire, as per required length extension board etc.
- A portable PC, installed with appropriate software (P50 Agile Configurator)

2.2.2 External circuitry check

Check the relay wiring on back terminal of relay against the appropriate wiring diagram:

- CT Secondary must be connected to the relay 1A or 5A. All CT wiring screws should be properly tightened.
Warning: An open circuit of the CT secondary wiring can cause high voltage which may be lethal and could damage insulation.

- Optionally external supply can be wired to the relay aux. supply terminals with proper polarity marking as mentioned on the Terminal sticker at the back of the relay. The supply range is also mentioned on this sticker. Confirm that the auxiliary supply is in range before energizing the relay.
- Trip Coil contact connection should be as per the given schematic diagram.
- Latching type annunciation contact connection as per requirement of site.

2.2.2.1 Earthing
An earthing terminal is provided at the back of the relay. Ensure that the case earthing connections (Top right-hand corner at the rear of the IED case) are used to connect the IED to a local earth bar using an adequate conductor.

With several relays present, make sure that the copper earth bar is properly installed for solidity connecting to the earthing terminal of each relay.

2.2.2 CT Polarity
Ensure proper CTs are connected as per required maximum load current and their polarity. When all CTs are connected with proper polarity, unbalance current flowing through earth fault element will be approximately zero. Otherwise the relay will trip on earth fault when the CB is energized.

2.2.3 Check relay settings
The relay setting check ensures that all of the application-specific settings for the particular installation have been correctly applied to the relay. Enter all settings manually via the front panel interface or suing P50 Agile configurator tool.

Following points to be checked:
- Ensure overcurrent and earth fault trip setting.
- Ensure TMS setting of overcurrent and earth fault are entered correctly as per required time grading between feeder and incomer.
- Ensure instantaneous setting is correct and its definite time delay is applied properly as per required time grading between feeder and incomer.
- Ensure selection of latching type annunciation duty contact is as per required function.
- Ensure that the current measurement in the relay is same as the applied current.

2.2.4 Final check
After completion of all relay functionality testing and relay setting check, remove all test equipment and shorting leads and then restore all the original wiring from the relay. While restoring wiring, it should be ensured that the CT connections are restored in accordance with the relevant external connection or schemes diagram. Ensure all fault and annunciation contacts, and trip contacts have been reset before leaving relay.

If the P15D is newly installed or the CB has just been maintained, the trip counter of Relay should be zero. This counter can be reset by enabling Clear Faults function in the RECORD CONTROL menu.

Note: This will also clear all fault memory and the set password.
2.2.5 Relay testing

2.2.5.1 Relay calibration
Before conducting a test, confirm the relay calibration using the following method.

1. Connect P15D relay to current injector and timer.

The following table shows the terminal numbers for CT connections.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>B1,B2</td>
</tr>
<tr>
<td>Y</td>
<td>B3,B4</td>
</tr>
<tr>
<td>B</td>
<td>B5,B6</td>
</tr>
<tr>
<td>N</td>
<td>B7,B8</td>
</tr>
</tbody>
</table>

2. Connect the CT terminals using the above table.
3. Adjust rated CT secondary current 1A or 5 A (based on the P15D variant under test). Observe the current value from the Measurement menu. The actual current should match the relay display.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Applied Current (Amp.)</th>
<th>Measured Current (Amp.)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.5.2 Pickup, Trip and Binary Output Test:

1. Connect current source 1A or 5 A (based on the P15D variant under test) to the current input terminal.
2. Set current setting value to 100% of rated current, TMS at Minimum (x0.02) value.
3. Start current injector to & increase current value till relay pick up and trip. The operating value should be within 1 to 1.1 times of set pickup value.
4. After tripping of relay, check continuity in between NO and C output contact terminal.

<table>
<thead>
<tr>
<th>Binary Output Contact</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latching Type</td>
<td>A6</td>
</tr>
<tr>
<td></td>
<td>A8</td>
</tr>
<tr>
<td>Non Latching Type</td>
<td>A5</td>
</tr>
<tr>
<td></td>
<td>A7</td>
</tr>
</tbody>
</table>

5. After reducing the current to reset value, only non-latching type relay contact (terminal A5 & A7) should open.
6. Press RESET Key and latching type contact (terminal A6 & A8) should be open.

2.2.6 Testing of Binary Input Contact:

1. The Binary inputs shall be tested by applying rated voltage to respective binary input terminals.
2. Binary inputs terminal details are as under:

<table>
<thead>
<tr>
<th>Binary Inputs</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>A15</td>
</tr>
<tr>
<td>S2</td>
<td>A12</td>
</tr>
<tr>
<td>S3</td>
<td>A11</td>
</tr>
<tr>
<td>Remote Trip (S4)</td>
<td>A16</td>
</tr>
</tbody>
</table>

3. Observed binary input (S1,S2,S3) status in system data menu on LCD display

4. For Testing Remote trip input, apply rated voltage at A16 and A18 terminal. Relay will immediately go in to tripping mode.

2.2.7 Testing for optional auxiliary power supply

The P15D is a dual power relay and can function with or without an external Auxiliary power supply. To test this function apply rated auxiliary supply at relay terminal A (19 & 20) with proper polarity and complete function of the relay can be tested.

It is suggested to use Numerical test kit while testing relay P15D. For timing measurements use the optional auxiliary supply to power ON the relay.

2.2.8 Testing for trip coil

The Impulse output for Circuit Breaker Tripping coil with trip energy (12 to 24 VDC, <= 0.1 J) is provided by a capacitor in the protection relay. The length of the pulse is 50 ms (if output is not burdened). The pause between the individual pulses depends upon the impedance of trip coil (C.B.) and the current level. Pulses are continued until the CB operates and fault current becomes zero. Testing can be performed at trip coil terminal - A1 (-ve) & A3 (+ve). The trip coil output function can be also operated by using TEST key on the relay front panel.

2.2.9 Testing for flag coil

The Impulse output for external Flag indicator with a trip energy of (12 to 24 VDC, <= 0.03 J) is provided by a capacitor in the protection relay. The length of the pulse is 50 ms (if output is not burdened). The pause between the individual pulses depends upon the impedance of flag indicator and the current level. Testing can be performed at Flag coil terminal – A2 (-ve) & A4 (+ve).

2.2.10 Functional test

2.2.10.1 Testing of Overcurrent Protection

1. Overcurrent I>1 function: Pickup test

<table>
<thead>
<tr>
<th>I>1 Setting</th>
<th>R Phase</th>
<th>Y Phase</th>
<th>B Phase</th>
<th>Limit value (amp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>5A</td>
<td>1A</td>
<td>5A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max</td>
</tr>
</tbody>
</table>
2. **Overcurrent I >1 function**: Operating time test (IDMT /DT curve)

For IDMT curve testing: Set I>1 = 100% TMS = 1.0
For DT curve testing: Set I>1 = 100% Time delay = 1.0 sec

Note: You can use only one CT input and operating curves which is relevant to your requirement.

<table>
<thead>
<tr>
<th>Injected current</th>
<th>Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For 1A relay</td>
</tr>
<tr>
<td>R Phase</td>
<td>5 In</td>
</tr>
<tr>
<td>Y Phase</td>
<td>5 In</td>
</tr>
<tr>
<td>B Phase</td>
<td>5 In</td>
</tr>
</tbody>
</table>

For IDMT curve testing: Set I>1 = 100% TMS = 0.1
For DT curve testing: Set I>1 = 100% Time delay = 0.05 sec

Note: IDMT operating time should be 1/10 of above observed timing.

<table>
<thead>
<tr>
<th>Injected current</th>
<th>Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For 1A relay</td>
</tr>
<tr>
<td>R Phase</td>
<td>5 In</td>
</tr>
<tr>
<td>Y Phase</td>
<td>5 In</td>
</tr>
<tr>
<td>B Phase</td>
<td>5 In</td>
</tr>
</tbody>
</table>

2.2.10.2 **Testing of Earth Fault Protection**

1. **Earth fault IN>1 function**: Pickup test

<table>
<thead>
<tr>
<th>I>1 Setting</th>
<th>EF input</th>
<th>Limit value (amp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>5A</td>
</tr>
<tr>
<td>20%</td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

2. **Earth Fault IN >1 function**: Operating time test (IDMT /DT curve)
For IDMT curve testing : Set IN >1 = 20%, TMS = 1.0
For DT curve testing : Set IN>1 = 20% Time delay =1 sec

Note: You can use only one CT input and Operating curves which is relevant to your requirement.

<table>
<thead>
<tr>
<th>Injected current</th>
<th>Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For 1A relay</td>
</tr>
<tr>
<td>EF</td>
<td>5 In</td>
</tr>
<tr>
<td></td>
<td>5 In</td>
</tr>
</tbody>
</table>

For IDMT curve testing : Set IN >1 = 20%, TMS = 0.1
For DT curve testing : Set IN>1 = 20% Time delay =0.05 sec

Note: IDMT operating time should be 1/10 of above observed timing.

<table>
<thead>
<tr>
<th>Injected current</th>
<th>Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For 1A</td>
</tr>
<tr>
<td>EF</td>
<td>5 In</td>
</tr>
</tbody>
</table>

Note: The test results need to be compared with the technical claims stated in the manual.

2.3 Maintenance

Maintenance checks

In view of the critical nature of the application, General Electric products should be checked at regular intervals to confirm they are operating correctly.

The devices are self-supervising and so require less maintenance than earlier designs of protection devices. Most problems will result in an alarm, indicating that remedial action should be taken. However, some periodic tests should be carried out to ensure that they are functioning correctly and that the external wiring is intact. It is the responsibility of the customer to define the interval between maintenance periods. If your organisation has a Preventative Maintenance Policy, the recommended product checks should be included in the regular program. Maintenance periods depend on many factors, such as:

- The operating environment
- The accessibility of the site
- The amount of available manpower
- The importance of the installation in the power system
- The consequences of failure

Although some functionality checks can be performed from a remote location, these are predominantly restricted to checking that the unit is measuring the applied currents and voltages accurately, and
checking the circuit breaker maintenance counters. For this reason, maintenance checks should also be performed locally at the substation.

Caution: Before carrying out any work on the equipment you should be familiar with the contents of the Safety Section or the Safety Guide Pxxx-SG-4LM-3 and the ratings on the equipment’s rating label.

Opto-Isolators

Check the opto-inputs by repeating the commissioning test detailed in the Commissioning chapter.

Output relays

Check the output relays by repeating the commissioning test detailed in the Commissioning chapter.

Measurement accuracy

If the power system is energised, the measured values can be compared with known system values to check that they are in the expected range. If they are within a set range, this indicates that the A/D conversion and the calculations are being performed correctly. Suitable test methods can be found in Commissioning chapter.

Alternatively, the measured values can be checked against known values injected into the device using the test block, (if fitted) or injected directly into the IED’s terminals. These tests will prove the calibration accuracy is being maintained.

Replacing the unit

If your product should develop a fault while in service, depending on the nature of the fault, the error codes will be generated which can be viewed on the relay HMI. First step is to take actions as suggested in the Troubleshooting section of this manual. In the unlikely event that the problem persist or lies with the wiring and/or terminals, then you must replace the complete device, rewire and re-commission the device.

Once the unit has been reinstalled, it should be re-commissioned.

Caution: If the repair is not performed by an approved service centre, the warranty will be invalidated.

Caution: Before carrying out any work on the equipment, you should be familiar with the contents of the Safety Information section of this guide or the Safety Guide Pxxx-SG-4LM-3 as well as the ratings on the equipment’s rating label. This should ensure that no damage is caused by incorrect handling of the electronic components.

Warning: Before working at the rear of the unit, isolate all voltage and current supplying it.

Note: P15D does not support automatic current transformer shorting. Therefore, for safety reasons CT terminals to be shorted when the terminal block is removed.
Cleaning

Warning: Before cleaning the IED, ensure that all AC and DC supplies and transformer connections are isolated to prevent any chance of an electric shock while cleaning.

Only clean the equipment with a lint-free cloth dampened with clean water. Do not use detergents, solvents or abrasive cleaners as they may damage the product's surfaces and leave a conductive residue.

2.4 Troubleshooting

The relay continuously monitors the hardware and detects any hardware fault/error. In case of hardware failure relay displays the corresponding error code on the LCD. These faults errors are stored in the error log file and can be viewed from “Error Log” menu. Error log is stored in 16 bit integer. The bit definition applicable to P15D is as under:

<table>
<thead>
<tr>
<th>Bit 12 – Bit 15</th>
<th>Bit 10 & Bit 11</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unused</td>
<td>Firmware Mismatch error</td>
<td>Unused</td>
<td>FRAM 3 Error</td>
<td>Unused</td>
<td>FRAM 2 Error</td>
<td>FRAM 1 Error</td>
<td>ADC Error</td>
<td>Unused</td>
<td>RTC Error</td>
<td>Unused</td>
<td>Setting Error</td>
</tr>
</tbody>
</table>

Error code descriptions are given below:

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Error Log Display</th>
<th>Error Data Bitwise</th>
<th>Description</th>
<th>Causes</th>
<th>Action taken MCU</th>
<th>Proposed action</th>
</tr>
</thead>
</table>
| 1 | 0001 | 0000 0000 0000 001 | SETTING ERROR | 1. Setting corrupted
2. Change in address of setting in memory | ON LED blinks with 1 sec interval indicating IED is OUT OF SERVICE | Go to CONFIGURATION menu and restore default settings and then save settings. Press (RESET + PROT. RESET). |
| 2 | 0004 | 0000 0000 0000 0100 | RTC ERROR | 1. I2C Bus Error
2. Damaged RTC
3. Battery backup not functioning | Error is checked periodically after 1 minute interval. | Set correct values for Date and Time and Press (RESET + PROT. RESET). |
| 3 | 0010 | 0000 0000 0001 0000 | ADC ERROR | 1. ADC device not working.
2. SPI bus error | ON LED blinks with 1 sec interval indicating IED is OUT OF SERVICE | Press (RESET + PROT. RESET) |
| 4 | 0020 | 0000 0000 0010 0000 | FRAM 1 Error | 1. SPI bus error
2. FRAM not working | Error is checked periodically after 1 minute interval. | Press (RESET + PROT. RESET) |
| 5 | 0040 | 0000 0000 0100 0000 | FRAM 2 Error | 1. SPI bus error
2. FRAM not working | Error is checked periodically after 1 minute interval. | Press (RESET + PROT. RESET) |
| 6 | 0100 | 0000 0001 0000 0000 | FRAM 3 Error | 1. SPI bus error
2. FRAM not working | Error is checked periodically after 1 minute interval. | Press (RESET + PROT. RESET) |
<p>| 7 | 0C00 | 0000 1100 0000 0000 | Incompatible Firmware error | Firmware flashed in to the relay is not compatible with the relay hardware (eg mismatch) | ON LED blinks with 1 sec interval indicating IED is OUT OF SERVICE | Flash correct Firmware as per the cortex information on the relay. |</p>
<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Error Log Display</th>
<th>Error Data Bitwise</th>
<th>Description</th>
<th>Causes in Relay name/ model number/ CT selection etc)</th>
<th>Action taken MCU</th>
<th>Proposed action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 14
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1. Chapter overview
2. Technical specification
 2.1.1 Standards compliance
TECHNICAL SPECIFICATION

Current Input

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>CT secondary</td>
<td>1 A or 5 A (ordering option)</td>
</tr>
</tbody>
</table>
| II. | Nominal burden at rated current (without tripping condition) | O/C CT < 4.2 VA (@ In = 1 A)
O/C CT < 4.5 VA (@ In = 5 A)
E/F CT <0.10 VA (@ In= 1A)
E/F CT <0.10 VA (@ In= 5A) |
| III. | Thermal withstand capacity | 50 x rated current (In) for 1s
30 x rated current (In) for 3s
2 x rated current (In) continuous |
| IV. | Operating range | For O/C : 0.2 – 35 In
For E/F : 0.1 – 35 In |
| V. | Measurement accuracy | Typical ± 2% at In for Phase and E/F CTs |
| VI. | Nominal frequency range for current Inputs | 50/60 Hz (selectable in P15D Menu) |
| VII. | Minimum current required to energize the relay | 1Ø ≥ 20% In, 2Ø ≥ 15% In and 3Ø ≥ 12% In. |
| VIII. | Frequency measurement range | 45 Hz – 65 Hz |

Auxiliary Supply

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Nominal auxiliary voltage</td>
<td>24-50 V DC or 100 – 230 V DC /AC (50 Hz / 60 Hz) (ordering option)</td>
</tr>
</tbody>
</table>
| II. | Operating range | 80% of lower nominal range and 120% of upper nominal range for DC supply
80% of lower nominal range and 110% of upper nominal range for AC supply |
| III. | Nominal burden on 100 – 230 V auxiliary power supply | 100-230 VAC <10 VA (no output or LED energized)
<12VA (status S1, S2 & S3 energised)
100-230 VDC <4W (no output or LED energised)
<4W (status S1, S2 & S3 energised) |
| IV. | Nominal burden on 24 - 50 VDC auxiliary power supply | <3 W (no output or LED energized)
<4 W (status S1, S2 & S3 energised) |
| V. | Tolerable ac ripple | Up to 15% of highest dc supply, as per IEC 60255-11: 2008 |
| VI. | Relay power up time with auxiliary supply | <50 ms |
| VII. | Auxiliary Power Supply Voltage Interruption (without powering by CT) | As per IEC 60255-11, within auxiliary supply range
100 – 230 V DC, the relay will withstand a 50 ms;
100 – 230 V DC, the relay will withstand a 50 ms;
24-50 V DC, the relay will withstand a 20 ms; |

Opto Isolated Input

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| I. | Nominal voltage range | Same as Auxiliary supply range
24 - 50 VDC or 100 – 230 VDC /AC (50Hz / 60Hz) |
| II. | VA burden of Status Inputs (S1, S2 & S3) | For 100 to 230V AC nominal voltage range: < 0.8 VA
For 100 to 230V DC nominal voltage range: < 0.8 W
For 24V to 50V DC nominal voltage range: < 0.5 W |
Technical Specifications

III. VA burden of Status S4 (Remote Trip)
- For 100 to 230 V AC nominal voltage range: < 12 VA
- For 100 to 230 V DC nominal voltage range: < 4 W
- For 24 V to 50 V DC nominal voltage range: < 4 W

Note: Relay draws power from Remote Trip input to power its electronics and provide tripping output to circuit breaker even if P15D is not supplied from auxiliary supply and current is below the minimum current required to power ON the relay.

IV. Operating voltage range
- 80% of lower nominal range and 120% of upper nominal range for DC
- 80% of lower nominal range and 110% of upper nominal range for AC

V. Pick up voltage range
- For 100 to 230 V auxiliary supply: 60 – 80V
- For 24 to 50 V auxiliary supply: 15 – 19V

VI. Drop off voltage range
- For 100 to 230 V auxiliary supply: 30 – 60V
- For 24 to 50 V auxiliary supply: 7 – 15V

VII. Filtering Time
- < 40 ms for S1, S2, S3

VIII. Logic input recognition time
- For S1, S2, S3: filtering time + 5ms ± 5 ms
- For S4 (Remote Trip): 3.5 sec ± 5%

Output Contact

I. Latching contact (Signalling contact)
- **Making capacity**: Making capacity – 2A /250 V AC
- **Breaking capacity**: Breaking capacity - 60 W / 62.5 VA

II. Non Latching contact
- **Continuous**: Continuous 5A/250 V AC
- **Make & carry**: 30A for 3sec AC/DC
- **Short time withstand capacity**: 50A for 1sec AC/DC
- **Breaking capacity**: AC: 1250 VA max. 5A or 300 V (PF=0.4)
 - DC: 100 W resistive max. 5A or 300 V
 - 50 W Inductive (L/R =45 ms) max. 5A or 300 V
- **Operating Time**: <10 msec
- **Minimum no. of operations**: 10,000 operation loaded condition & unloaded 100,000 operations

III. Impulse output for tripping coil
- **Impulse output for the tripping coil**: 12 V - 24 VDC (Energy <= 0.1 J)

Note: The trip energy for the trip coil is stored by a capacitor built into the protection relay. The capacitor is charged by a current input or the auxiliary voltage. The duration of the trip pulse is 50 ms (if output is not burden). The pause between the individual pulses depends on the impedance of the trip coil and on the current level. The pulse lasts as long as the activation threshold is exceeded. The voltage level of the energy output depends on the discharging time

IV. Impulse output for Flag Indicator or Auxiliary Relay
- **Impulse output for Flag Indicator or auxiliary Relay**: 12 V - 24 VDC (Energy <= 0.03 J)

Note: The trip energy for the flag indicator is stored by a capacitor built into the protection relay. The capacitor is charged by a current input or the auxiliary voltage. The duration of the trip pulse is 50 ms (if output is not burden). The pause between the individual pulses depends on the impedance of the flag indicator and on the current level. The pulse lasts as long as the activation threshold is exceeded. The impulse output for flag indicator and trip coil drive energy from same source. The flag out use additional capacitor to store required energy. If more energy is take from flag output than specified, then it will affect energy output of trip coil

Accuracy of protection function

Overcurrent & Earth Fault function

<table>
<thead>
<tr>
<th></th>
<th>Pick-up</th>
<th>Setting +10% / -5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum trip level of IDMT</td>
<td>1.05 x Settings ± 5%</td>
<td></td>
</tr>
<tr>
<td>Drop-off</td>
<td></td>
<td>0.95 x Setting ± 5% (for setting >=20%) 0.90 x Setting ± 10% (for setting < 20%)</td>
</tr>
</tbody>
</table>
Technical Specifications

P50 Agile P15D

<table>
<thead>
<tr>
<th>Operating time</th>
<th>IDMT characteristic shape with Relay Power ON condition</th>
<th>as per class5 of 60255-151 cl.5.2 or ± 60 ms whichever is greater*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT operation with Relay Power ON condition</td>
<td></td>
<td>± 5% or ± 60 ms whichever is greater**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating time</th>
<th>IDMT characteristic shape with Relay Power OFF condition</th>
<th>as per class5 of 60255-151 cl.5.2 or ± 90 ms whichever is greater*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT operation with Relay Power OFF condition</td>
<td></td>
<td>± 5% or ± 90 ms whichever is greater **</td>
</tr>
</tbody>
</table>

*Reference condition TMS=1, I>setting of 1A, Operating range 2-20 In

**Reference condition Fault current 2 times above set value

II. Under current function

(For proper operation, relay must be Powered ON by external auxiliary supply)

<table>
<thead>
<tr>
<th>Operating value</th>
<th>Pick-up</th>
<th>Below 0.20 In : 0.95 x settings ± 7.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Above 0.20 In : 0.95 x settings ± 5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating value</th>
<th>Drop –off</th>
<th>Below 0.20 In : 1.05 x settings ± 7.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Above 0.20 In : 1.05 x settings ± 5%</td>
</tr>
</tbody>
</table>

III. Thermal Overload function

<table>
<thead>
<tr>
<th>Operating time</th>
<th>DT operation</th>
<th>± 5% or ± 60 ms whichever is greater</th>
</tr>
</thead>
</table>

IV. Cold Load Pickup function

<table>
<thead>
<tr>
<th>Operating time</th>
<th>tcold</th>
<th>Setting ± 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tcp</td>
<td>Setting ± 10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating value</th>
<th>Pick-up</th>
<th>Setting +10% / - 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum trip level of IDMT</td>
<td>1.05 x Settings ± 5%</td>
<td></td>
</tr>
<tr>
<td>Drop –off</td>
<td>0.95 x settings ± 5%</td>
<td></td>
</tr>
</tbody>
</table>
Operating time

<table>
<thead>
<tr>
<th>Characteristic shape</th>
<th>Relay ON condition</th>
<th>as per class5 of 60255-151 cl.5.2 or ± 60 ms whichever is greater*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT operation</td>
<td>Power ON condition</td>
<td>± 5% or ± 60 ms whichever is greater**</td>
</tr>
<tr>
<td>IDMT characteristic shape</td>
<td>Relay OFF condition</td>
<td>as per class5 of 60255-151 cl.5.2 or ± 90 ms whichever is greater*</td>
</tr>
<tr>
<td>DT operation</td>
<td>Power OFF condition</td>
<td>± 5% or ± 90 ms whichever is greater**</td>
</tr>
</tbody>
</table>

*Reference condition: TMS=1, \(I > \text{setting of } 1 \times I_n \), Operating range 2-20 \(I_n \)

**Reference condition: Fault current 2 times above set value

2nd Harmonic blocking function

<table>
<thead>
<tr>
<th>Operating value</th>
<th>2nd Harm Thresh</th>
<th>Setting ±15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I>lift 2H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>I. Relative Humidity</th>
<th>Humidity (RH) 95% maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Operating temperature range</td>
<td>-25 ºC to +65 ºC (without battery)</td>
</tr>
<tr>
<td>III. Storage temperature range</td>
<td>-25 ºC to +65 ºC (without battery)</td>
</tr>
</tbody>
</table>

Battery Details

<table>
<thead>
<tr>
<th>I. Battery</th>
<th>AA type, 1.5volts, non rechargeable batteries For capacity 4.5 volts, use 1.5V x 3 nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Batteries not supplied with the relay. We recommend Lithium batteries (Make – ENERGISER L91 Ultimate Lithium)</td>
<td></td>
</tr>
</tbody>
</table>
| II. Backlit ON time | • 60 sec when switched on by “Bat. ON” key (CT current is less than minimum operating value and there is no auxiliary supply)
• 10 sec after Trip. |

Terminals specification

I. AC current Input Terminals	M5 threaded terminals for ring lug connection. Suitable up to 4 mm²
II. Auxiliary & Input/output Terminals	M4 threaded terminal connection. Suitable up to 2.5 mm²
III. Rear Communication Terminal	For two wire connection. Suitable up to 2.5 mm²

Mechanical & Environmental specification

I. Design	Flush mounting case
II. Weight	3.50 Kg approximate
III. Pollution Degree	II
2.1.1 Standards compliance

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>TYPE TEST</th>
<th>STANDARD</th>
<th>TEST SPECIFICATION/METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Impulse, Dielectric and Insulation tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Impulse voltage test</td>
<td>IEC 60255-27:2005 (incl. corrigendum 2007)</td>
<td>Test voltage 5kv, 1.2/50 μV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energy 0.5 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polarity +ve and –ve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. of impulses 3 on each polarity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration between impulses 5sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EUT condition Non energised</td>
</tr>
<tr>
<td>1.2</td>
<td>Dielectric voltage withstand test</td>
<td>IEC 60255-27:2005 (incl. corrigendum 2007)</td>
<td>Product shall withstand for 1 minute between</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1) 2kV all terminals connected together with case earth.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) 2kV independent circuit with case earth.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) 1.5kV across tripping Relay contact.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) 1kV across non tripping relay contact.</td>
</tr>
<tr>
<td>1.3</td>
<td>Insulation resistance test</td>
<td>IEC 60255-27:2005 (incl. corrigendum 2007)</td>
<td>Product shall have minimum insulation resistance of 100 MΩ</td>
</tr>
<tr>
<td>2.</td>
<td>Auxiliary Supply tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>DC voltage dips</td>
<td>IEC 60255-11, IEC 60255-5, IEC60255-26</td>
<td>DC auxiliary supply dip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1) At 40% for 200ms. 2) At 70% for 500ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No loss of protection</td>
</tr>
<tr>
<td>2.2</td>
<td>DC voltage interruption</td>
<td>IEC 60255-11, IEC 60255-5, IEC60255-26</td>
<td>1) DC auxiliary supply interruptions for 10, 20ms with no loss of protection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) DC auxiliary supply interruptions for 30ms, 50ms, 100ms, 200ms, 300ms, 0.5s, 1s, 5s with temporary loss of protection.</td>
</tr>
<tr>
<td>2.3</td>
<td>AC voltage dips</td>
<td>IEC60255-26(ed3.0)-2013</td>
<td>AC auxiliary supply dip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1) At 40% for 200ms. 2) At 70% for 500ms 3) At 80% for 5s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No loss of protection</td>
</tr>
<tr>
<td>2.4</td>
<td>AC voltage interruption</td>
<td>IEC60255-26(ed3.0)-2013</td>
<td>1) AC auxiliary supply interruptions for 10, 20ms with no loss of protection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) AC auxiliary supply interruptions for 50ms, 100ms, 200ms, 0.5s, 5s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temporary loss of protection.</td>
</tr>
<tr>
<td>2.5</td>
<td>AC (ripple) in DC supply</td>
<td>IEC 60255-11, IEC60255-26</td>
<td>AC 100Hz ripple superimposed on DC max. (120% HRV) and min. (80% LRV) auxiliary supply at 15% of highest rated DC.</td>
</tr>
<tr>
<td>2.6</td>
<td>Gradual shut down/ start-up Test</td>
<td>IEC 60255-11, IEC 60255-5, IEC60255-26</td>
<td>The unit must power down and up correctly with no mal operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shut down time 60 sec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power off time 5 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Start-up time 60 sec.</td>
</tr>
<tr>
<td>2.7</td>
<td>Reversal of DC power supply polarity test</td>
<td>IEC 60255-11, IEC 60255-5, IEC60255-26</td>
<td>Product shall withstand for 1 minute with Reverse polarity of power supply inputs.</td>
</tr>
<tr>
<td>3. Emission tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Radiated emission test</td>
<td>IEC60255-26(ed3.0)-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The EUT shall satisfy the requirement of this specification. Radiation measured at a distance of 10 meter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 MHz – 230 MHz</td>
<td>40 dB (µV/m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 MHz – 1000 MHz</td>
<td>47 dB (µV/m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUT condition</td>
<td>Energised</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Conducted emission test	IEC60255-26(ed3.0)-2013
The EUT shall satisfy the requirement of this specification.	
Frequency range	Limits
0.15 – 0.5 MHz	79 dB/µV (Quasi peak)
	66 dB/µV (Average)
0.5 – 30 MHz	73 dB/µV (Quasi peak)
	60 dB/µV (Average)
EUT condition	Energised

<table>
<thead>
<tr>
<th>4. Immunity tests</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 High frequency disturbance test</td>
<td>IEC60255-26(ed3.0)-2013</td>
</tr>
</tbody>
</table>
| 1) 2.5 kV Common mode
a) Between independent circuit and case earth.
b) Independent circuit.
2) 1 kV Differential mode
a) Independent circuit.
EUT condition: Energised | |

| **4.2 Electrostatic discharge** | IEC60255-26(ed3.0)-2013 |
| 1) 15kV air discharge
2) 8kV contact discharge
3) 15kV indirect discharge
EUT condition | Energised |

| **4.3 Surge immunity test** | EN61000-4-5, IEC60255-26(ed3.0)-2013 |
| 1) 4KV: Power supply common mode
2) 2KV Power supply differential mode
3) 4KV CT/VT/ input / output ports common mode
4) 2KV CT/VT/ input / output ports differential mode
5) 2KV RS485 communications common mode
EUT condition: Energised | |

| 1) 4kV 5 kHz, power supply and earth ports.
2) 2kV 5 kHz, all other circuits (excluding power supply and earth ports).
3) 4kV 5 kHz and 100 kHz, applied to all circuits excluding communication ports
4)2kV 5 kHz and 100 kHz, applied to communication ports
EUT condition: Energised | |

| 1) Voltage level :10 V/m
Frequency range :80 - 1000 MHz , 1.4 – 2.7 GHz
2) Voltage level :30 V/m
Frequency range :800 – 960 MHz , 1.4 – 2 GHz
Modulation :80% AM @ 1 KHz
Spot Frequency : 80, 160, 380, 450, 900,1850 & 2150MHz | |
4. Technical Specifications

4.6 Conducted disturbance inducted by radio frequency field

<table>
<thead>
<tr>
<th>Voltage level</th>
<th>10 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>0.15 – 80 MHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>80% AM @ 1 KHz</td>
</tr>
<tr>
<td>Dwell time</td>
<td>2.85 Sec.</td>
</tr>
<tr>
<td>EUT condition</td>
<td>Energized</td>
</tr>
<tr>
<td>Spot frequency</td>
<td>27, 68 MHz</td>
</tr>
</tbody>
</table>

4.7 Power frequency magnetic field immunity

| Spot frequency | 27, 68 MHz |

4.8 Pulsed magnetic field immunity

| Spot frequency | 27, 68 MHz |

4.9 Damped oscillatory magnetic field

| Spot frequency | 27, 68 MHz |

4.10 Damped oscillatory test

| Spot frequency | 27, 68 MHz |

5. Mechanical tests

5.1 Vibration response test

Frequency range	10 Hz to 150 Hz
Crossover frequency	58 to 60 Hz
Peak displacement before crossover	0.075mm
Peak acceleration after crossover	1 gn
No. of sweep cycles per axis	1
EUT condition	Energised

5.2 Vibration endurance test

Frequency range	10 to 250Hz
Peak acceleration	2 gn
No. of sweep cycles per axis	20
EUT condition	Non energised

5.3 Shock response test

Peak acceleration	10 gn
Pulse duration	11 ms
No. of pulses in each direction	5
EUT condition	Energised
5.4 Shock withstand test

EN 60255-21-2:1996 Class 2

- **Peak acceleration**: 30 gn
- **Pulse duration**: 11 ms
- **No. of pulses in each direction**: 3
- **EUT condition**: Non energised

5.5 Bump test

EN 60255-21-2:1996 Class 2

- **Peak acceleration**: 20 gn
- **Pulse duration**: 16 ms
- **No. of pulses in each direction**: 1000
- **EUT condition**: Non energized

5.6 Seismic test

EN 60255-21-3:1995 (Class 2 - 2g peak)

- **Frequency range**: 1 to 35 Hz
- **Crossover frequency**: 8 Hz
- **Peak displacement before crossover X**: 7.5 mm
- **Peak displacement before crossover Y**: 3.5 mm
- **Peak acceleration after crossover X**: 2 gn
- **Peak acceleration after crossover Y**: 1 gn
- **No. of sweep cycles per axis**: 1
- **EUT condition**: Energised

6. Environmental tests

6.1 Dry heat test

IEC 60255-1, IEC 60068-2-2: 2007 Bd

- **Start-up +20°C (EUT energised)**: Functional verification tests for 2 hours
- **Intermediate +40°C (EUT energised)**: Functional verification tests for 2 hours
- **High temperature claim +65°C (EUT energised at highest rated voltage)**: Operate for 96 hours at highest rated voltage (HRV)
- **High temperature claim +70°C (EUT not energised)**: Storage for 96 hours
- **Hot start +65°C (EUT energised at highest rated voltage)**: Operate for 2 hours at highest rated voltage (HRV)
- **Last test +20°C (EUT energised)**: Functional verification tests for 2 hours

6.2 Cold test

IEC 60255-1, IEC 60068-2-1: 2007

- **Start-up +20 °C (EUT energised)**: Functional verification tests for 2 hours
- **Intermediate 0°C (EUT energised)**: Functional verification tests for 2 hours
- **Intermediate -10°C (EUT energised)**: Functional verification tests for 2 hours
- **Low temperature - 25°C (EUT energised)**: Functional verification tests for 96 hours
- **Low temperature -25°C (EUT not energised)**: Storage for 96 hours
- **Cold start -25°C (EUT energised)**: Operate for 2 hours
- **Last test +20°C (EUT energised)**: Functional verification tests for 2 hours

6.3 Change of Temperature Test

IEC 60255-1, EN 60068-2-14:2009 Nb

- **Lower temperature**: -25°C
- **Higher temperature**: +55°C
- **Rate of change of temperature**: 1°C/min
- **Duration of exposure**: 5 cycle
- **Duration of cycle**: 3 + 3 hrs.
| 6.4 | Damp heat steady state test | EN 60068-2-78, EN60068-2-30 | EUT condition | Energised |
| | | | Operating temperature | +40°C |
| | | | Humidity | 93% |
| | | | Duration of exposure | 10 days |
| | | | EUT condition | Energised |

6.5	Damp heat cyclic test	EN60068-2-30, EN 60068-2-78	Lower temperature	C
			Humidity	97%
			Higher temperature	+55°C
			Humidity	93%
			Duration of exposure	6 cycle
			Duration of cycle	12 + 12 hrs.
			EUT condition	Energised

6.6	Enclosure protection	EN 60529:2000	IP52	For Front
			IP20	For Rear
			EUT condition	Non energised
1 CHAPTER OVERVIEW

This chapter consists of the following sections:

1 Chapter overview
2 Wiring diagrams
Figure 1: P15D wiring diagram
Imagination at work

Grid Solutions
St Leonards Building
Redhill Business Park
Stafford, ST16 1WT, UK
+44 (0) 1785 250 070
www.gegridsolutions.com/contact

© 2019 General Electric. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.